Abstract:
Disclosed herein are improved methods and compositions for achieving enhanced protein production expressed from non-native gene constructs, including single chain sFv and derivative sequences. The methods and compositions are particularly useful for creating stably transfected, constitutively expressing immortalized mammalian cell lines that exhibit high recombinant protein productivity while maintaining a low copy number per cell of the non-native recombinant DNA sequence encoding the protein of interest.
Abstract:
Disclosed is a method and a family of materials useful for removing immune complexes from blood preferentially to soluble antibodies. The material comprises analogs of proteins which bind to the Fc region of immunoglobulin. The analogs are produced by truncating or otherwise altering the amino acid sequence of the binding protein to reduce their affinity for Fc. An array of such analogs disposed about the surface of an insoluble matrix has the ability to form multiple points of attachment to the multiple Fc's in a complex so as to bind complex strongly, whereas only weak associations are developed between the Fc region of soluble IgG and individual analogs. The preferred analogs are truncated proteins homologous to a portion of the domains of Protein A or Protein G which bind with Fc. Complex may be removed from whole blood or serum using the material and conventional plasmapheresis techniques.
Abstract:
Disclosed are 1) osteogenic devices comprising a matrix containing osteogenic protein and methods of inducing endochondral bone growth in mammals using the devices; 2) amino acid sequence data, amino acid composition, solubility properties, structural features, homologies and various other data characterizing osteogenic proteins, 3) methods of producing osteogenic proteins using recombinant DNA technology, and 4) osteogenically and chondrogenically active synthetic protein constructs.
Abstract:
Disclosed are (1) osteogenic devices comprising a matrix containing osteogenic protein and methods of inducing endochondral bone growth in mammals using the devices; (2) amino acid sequence data, amino acid composition, solubility properties, structural features, homologies and various other data characterizing osteogenic proteins, (3) methods of producing osteogenic proteins using recombinant DNA technology, and (4) osteogenically and chondrogenically active synthetic protein constructs.
Abstract:
The invention relates to a method for connecting a precious metal surface to a polymer, wherein a layer made of 20% to 40% gold and 60% to 80% silver is deposited on a substrate and the silver is subsequently selectively removed in order to produce a nanoporous gold layer. A fluid polymer is applied to the gold layer and cured.
Abstract:
The invention provides modified TGF-β family proteins having altered biological or biochemical properties, and methods for making them. Specific modified protein constructs include TGF-β family member proteins that have N-terminal truncations, “latent” proteins, fusion proteins and heterodimers.
Abstract:
The invention relates to a method for connecting two joining surfaces, particularly in the field of semiconductors, wherein at least one joining surface is produced by depositing a layer comprising 20 to 40% gold and 80 to 60% silver onto a substrate and selectively removing the silver from the deposited layer in order to produce a nanoporous gold layer as a joining surface. The joining surface with the nanoporous gold layer and an additional joining surface are disposed one above the other and pressed together.
Abstract:
The invention provides modified TGF-β family proteins having altered biological or biochemical properties, and methods for making them. Specific modified protein constructs include TGF-β family member proteins that have N-terminal truncations, “latent” proteins, fusion proteins and heterodimers.
Abstract:
Disclosed are therapeutic treatment methods, compositions and devices for maintaining neural pathways in a mammal, including enhancing survival of neurons at risk of dying, inducing cellular repair of damaged neurons and neural pathways, and stimulating neurons to maintain their differentiated phenotype. In one embodiment, the invention provides means for stimulating CAM expression in neurons. The invention also provides means for evaluating the status of nerve tissue, including means for detecting and monitoring neuropathies in a mammal. The methods, devices and compositions include a morphogen or morphogen-stimulating agent provided to the mammal in a therapeutically effective concentration.