Abstract:
A combined signal is received over a shared spectrum in a time slot in a time division duplex communication system using code division multiple access. Each data signal experiences a similar channel response. The similar channel response is estimated. A matrix representing a channel of the data signals based on in part the estimated channel response is constructed. A spread data vector is determined based on in part a fast fourier transform (FFT) decomposition of a circulant version of the channel matrix. The spread data vector is despread to recover data from the received combined signal.
Abstract:
Method and apparatus employed by a UE for interference signal code power noise variance estimation employing a reduced number of samples utilizing the equation σ ^ n 2 = T · ∑ i = 1 N sample h n ( i ) 2 , where T = G · γ ( r ) N sample , where Nsample=Lchest−Npl·Kmax, where γ ( r ) = [ 1 + ( 1 r - 1 ) · ln ( 1 - r ) ] - 1 and where r = N sample L chest . As an alternative, a recursive technique may be employed wherein the noise variance is estimated from the ignored coefficients of the estimated channel output and upgraded recursively as per the following: σ ^ n 2 = 1 KW ∑ j = 1 K ∑ i = 1 W h i ( j ) - h ^ i ( j ) 2 , where ĥi(j) are the channel estimates after the post processing and the noise variance estimates {circumflex over (σ)}n-12, and the initial values of ĥi(j) are all zeros.
Abstract:
A code indexing system for a CDMA communication station that uses orthogonal variable spreading factor (OVSF) codes has a single number mapped to each code. The new code number itself not only provides the code signature, but it is also used for the OVSF code generation. In addition, the system provides easy and fast generation of the available code list without the help of look-up table. This capability improves the dynamic code assignment.
Abstract:
A code division multiple access base station receives K data signals over a shared spectrum. The base station receives and samples a combined signal having the K transmitted data signals. A combined channel response matrix is produced. A block column of a cross correlation matrix is determined using the combined channel response matrix. Each block entry of the block column is a K by K matrix. Each block entry of the block column is a K by K matrix. A fourier transform of a complex conjugate transpose of the combined channel response matrix multiplied to the combined signal samples is taken. An inverse of a fourier transform of each block entry is multiplied to a result of the fourier transform to produce a fourier transform of the data vector. An inverse fourier transform of the data vector fourier transform is taken to produce data of the K signals.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) wireless transmit/receive unit (WTRU) and method are disclosed. A WTRU includes a transmitter and a receiver. The receiver processes received data to recover data mapped to the subcarriers using OFDMA. The receiver recovers first input data by separating user data from multi-user spread data and recovers second input data from non-spread data.
Abstract:
A plurality of data signals are received over an antenna array having a plurality of antenna elements. The data signals are transmitted over a shared spectrum in a wireless communication system. A signal having each of the data signals is received over each antenna element. The plurality of data signals are grouped into a plurality of groups. The received signals of the antenna elements are matched filtered for a first group of the plurality of groups, producing a matched filtered result. Data is jointly detected of the first group using the matched filtered result. An interference correction signal is constructed using the detected data for each antenna element. The interference cancelled result is subtracted from the received signal of each antenna element, producing an interference cancelled result for each antenna element. Data is successively detected for remaining groups using the interference cancelled result for each antenna element.
Abstract:
A method and apparatus for reducing the processing rate when performing chip-level equalization (CLE) in a code division multiple access (CDMA) receiver which includes an equalizer filter. Signals received by at least one antenna of the receiver are sampled at M times the chip rate. Each sample stream is split into M sample data streams at the chip rate. Multipath combining is preferably performed on each split sample data stream. The sample data streams are then combined into one combined sample data stream at the chip rate. The equalizer filter performs equalization on the combined sample stream at the chip rate. Filter coefficients are adjusted by adding a correction term to the filter coefficients utilized by the equalizer filter for a previous iteration.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) wireless transmit/receive unit (WTRU) and method are disclosed. A WTRU includes a transmitter and a receiver. The receiver processes received data to recover data mapped to the subcarriers using OFDMA. The receiver recovers first input data by separating user data from multi-user spread data and recovers second input data from non-spread data.
Abstract:
A method and apparatus for reducing the processing rate when performing chip-level equalization (CLE) in a code division multiple access (CDMA) receiver which includes an equalizer filter. Signals received by at least one antenna of the receiver are sampled at M times the chip rate. Each sample stream is split into M sample data streams at the chip rate. Multipath combining is preferably performed on each split sample data stream. The sample data streams are then combined into one combined sample data stream at the chip rate. The equalizer filter performs equalization on the combined sample stream at the chip rate. Filter coefficients are adjusted by adding a correction term to the filter coefficients utilized by the equalizer filter for a previous iteration.
Abstract:
An orthogonal frequency division multiplexing (OFDM)-code division multiple access (CDMA) system is disclosed. The system includes a transmitter and a receiver. At the transmitter, a spreading and subcarrier mapping unit spreads an input data symbol with a complex quadratic sequence code to generate a plurality of chips and maps each chip to one of a plurality of subcarriers. An inverse discrete Fourier transform is performed on the chips mapped to the subcarriers and a cyclic prefix (CP) is inserted to an OFDM frame. A parallel-to-serial converter converts the time-domain data into a serial data stream for transmission. At the receiver, a serial-to-parallel converter converts received data into multiple received data streams and the CP is removed from the received data. A discrete Fourier transform is performed on the received data streams and equalization is performed. A despreader despreads an output of the equalizer to recover the transmitted data.