Abstract:
The present disclosure describes apparatuses and methods for manufacturing programmable memory devices with optimized gate oxide thickness. In some aspects, lithography masks are used to fabricate oxide gates for programmable memory devices of an integrated-circuit (IC) die that are thinner than oxide gates fabricated for processor core devices of the IC die. In other aspects, lithography masks are used to fabricate oxide gates for the programmable memory devices of the IC die such that they are thicker than the oxide gates fabricated for the processor core devices of the IC die. By so doing, the programmable memory devices can be manufactured with optimized gate oxide thickness that may reduce programming voltage or increase device reliability of the programmable memory devices.
Abstract:
A memory including a memory cell and first and second modules. The memory cell has first and second states, where the second state is different than the first state. The first module, subsequent to an initial forming of the memory cell and subsequent to a read cycle or a write cycle of the memory cell, determines a first difference between the first state and a first predetermined threshold or a second difference between the first state and the second state. The second module, subsequent to the first module determining the first difference or the second difference, reforms the memory cell to reset and increase the first difference or the second difference. The second module, during the reforming of the memory cell, applies a first voltage to the memory cell. The first voltage is greater than a voltage applied to the memory cell during the read cycle or the write cycle.
Abstract:
A system includes a resistive random access memory cell and a driver circuit. The resistive random access memory cell includes a resistive element and a switching element, and has a first terminal connected to a bit line and a second terminal connected to a word line. The driver circuit is configured to apply, in response to selection of the resistive random access memory cell using the word line, a first voltage of a first polarity to the bit line to program the resistive random access memory cell to a first state by causing current to flow through the resistive element in a first direction, and a second voltage of a second polarity to the bit line to program the resistive random access memory cell to a second state by causing current to flow through the resistive element in a second direction.
Abstract:
A method of forming an integrated circuit includes: forming a dielectric layer, a hard mask layer, a film layer and a photoresist layer; and patterning the photoresist layer to form a via mask, where the via mask is oversized, such that the via mask extends across opposing sides of a metal line mask in the hard mask layer. The method further includes: etching the film layer and the dielectric layer based on the patterned photoresist layer; ashing the photoresist layer and the film layer; etching the dielectric layer based on a pattern of the hard mask layer to provide a via region and a metal line region; etching the hard mask layer and the dielectric layer; and performing a plurality of dual damascene process operations to form a via in the via region and a metal line in the metal line region in the integrated circuit.
Abstract:
The present disclosure describes apparatuses and methods for manufacturing programmable memory devices with optimized gate oxide thickness. In some aspects, lithography masks are used to fabricate oxide gates for programmable memory devices of an integrated-circuit (IC) die that are thinner than oxide gates fabricated for processor core devices of the IC die. In other aspects, lithography masks are used to fabricate oxide gates for the programmable memory devices of the IC die such that they are thicker than the oxide gates fabricated for the processor core devices of the IC die. By so doing, the programmable memory devices can be manufactured with optimized gate oxide thickness that may reduce programming voltage or increase device reliability of the programmable memory devices.
Abstract:
A method for packaging semiconductor devices in a chamber includes arranging a carrier substrate including a first semiconductor device and a second semiconductor device within the chamber, flowing a molding compound into the chamber to cover surfaces of the first semiconductor device, the second semiconductor device, and the carrier substrate, and flowing a forming gas into the chamber while curing the molding compound. The forming gas includes a reactive gas configured to react with the first semiconductor device and the second semiconductor device during curing.
Abstract:
The present disclosure includes systems and techniques relating to methods and systems that improve yield in multiple chips integration processes. In some implementations, a method includes providing, in a chamber, a first integrated circuit chip and a second integrated circuit chip supported on a carrier, flowing a molding compound to cover the first integrated circuit chip, the second integrated circuit chip, and the carrier; and flowing a forming gas into the chamber while curing the molding compound.
Abstract:
In some implementations, a method of fabricating an integrated circuit includes obtaining first data for a first chip containing a first version of the integrated circuit, determining that a transistor should be coupled with another transistor, selecting one or more masks for coupling the transistor with the other transistor to adjust the threshold voltage of the transistor, obtaining second data for a second chip containing a second version of the integrated circuit, determining that the second version of the integrated circuit meets one or more requirements, and preparing a final integrated circuit design for production based on the second version of the integrated circuit.
Abstract:
The present disclosure describes methods and apparatuses for fabricating integrated-circuit (IC) die with tilted patterning. In some aspects, mandrels are fabricated on a material stack and occlude portions of a layer of material from a field of energy radiated at an angle of incidence relative to the mandrels. The occluded portions of the layer of material can be used to mask an underlying film to create a film pattern on a substrate of the IC die. These methods and apparatuses may enable the fabrication of IC die with features that are smaller in size than those afforded by conventional lithography processes.
Abstract:
The present disclosure includes systems and techniques relating to methods and systems that improve yield in multiple chips integration processes. In some implementations, a method includes providing, in a chamber, a first integrated circuit chip and a second integrated circuit chip supported on a carrier, flowing a molding compound to cover the first integrated circuit chip, the second integrated circuit chip, and the carrier; and flowing a forming gas into the chamber while curing the molding compound.