Abstract:
The present disclosure describes aspects of a sub-device field-effect transistor architecture for integrated circuits. In some aspects, an integrated field-effect transistor (FET) is implemented with multiple FET sub-devices. During operation, source-side FET sub-devices of the integrated FET may operate in the linear region instead of in saturation. Operating in the linear region, the source-side FET sub-devices of the integrated FET may exhibit less threshold voltage or current sensitivity than other drain-side FET sub-devices that operate in saturation. A device layout of the integrated FET may be designed such that the less sensitive source-side FET sub-devices surround or protect the other more sensitive drain-side FET sub-devices from random variations or density issues at edges of the device layout. By so doing, a threshold voltage or current sensitivity of the integrated FET may be reduced, resulting in improved matching between integrated FET devices.
Abstract:
In an embodiment, a method comprises: forming a fin feature on a portion of a surface of a substrate; forming a first region of polycrystalline silicon over a first portion of the fin feature; forming a second region of polycrystalline silicon over a second portion of the fin feature; forming a third region of polycrystalline silicon over a third portion of the fin feature, wherein the third region of polycrystalline silicon is disposed between (i) the first region and (ii) the second region; forming a first spacer region between the first region and the third region; forming a second spacer region between the second region and the third region; removing the third region and at least a portion of the fin feature formed under the third region to thereby form a gap; and disposing a second dielectric material into the gap to form an isolation component.
Abstract:
In some implementations, a method of fabricating an integrated circuit includes obtaining first data for a first chip containing a first version of the integrated circuit, determining that a transistor should be coupled with another transistor, selecting one or more masks for coupling the transistor with the other transistor to adjust the threshold voltage of the transistor, obtaining second data for a second chip containing a second version of the integrated circuit, determining that the second version of the integrated circuit meets one or more requirements, and preparing a final integrated circuit design for production based on the second version of the integrated circuit.
Abstract:
A system including a resistive element of a memory cell and a device to access the resistive element of the memory cell. The resistive element includes (i) a first electrode, and (ii) a second electrode. The device includes (i) a first terminal connected to a first contact, and (i) a second terminal connected to a second contact. One or more of the first contact and the second contact of the device is respectively connected to one or more of the first electrode and the second electrode of the resistive element via a third contact. A size of the third contact decreases from the one or more of the first contact and the second contact of the device to the one or more of the first electrode and the second electrode of the resistive element of the memory cell.
Abstract:
Embodiments include a semiconductor device comprising: a gate layer comprising (i) a first section and (ii) a second section, wherein the gate layer is non-linear such that the first section of the gate layer is offset with respect to the second section of the gate layer; and a first contact and a second contact, wherein the first section of the gate layer is at (i) a first distance from the first contact and (ii) a second distance from the second contact, wherein the first distance is different from the second distance.
Abstract:
Embodiments of the present disclosure provide a method, comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming one or more vias in the first surface of the semiconductor substrate, the one or more vias initially passing through only a portion of the semiconductor substrate without reaching the second surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, the redistribution layer being electrically coupled to the one or more vias, coupling one or more dies to the redistribution layer, forming a molding compound to encapsulate at least a portion of the one or more dies, and recessing the second surface of the semiconductor substrate to expose the one or more vias. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure provide a method, comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming one or more vias in the first surface of the semiconductor substrate, the one or more vias initially passing through only a portion of the semiconductor substrate without reaching the second surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, the redistribution layer being electrically coupled to the one or more vias, coupling one or more dies to the redistribution layer, forming a molding compound to encapsulate at least a portion of the one or more dies, and recessing the second surface of the semiconductor substrate to expose the one or more vias. Other embodiments may be described and/or claimed.
Abstract:
A cell of a resistive random access memory including (i) a resistive element and (ii) a switch. The resistive element includes (i) a first electrode, and (ii) a second electrode. The switch includes (i) a first terminal connected to a first contact, and (i) a second terminal connected to a second contact. The second contact is connected to the second electrode of the resistive element via a third contact. The third contact has a shape including a first surface and a second surface that is opposite to the first surface. The shape of the third contact tapers inward from the first surface towards the second surface.
Abstract:
A cell of a resistive random access memory including a resistive element and an access device. The resistive element includes (i) a first electrode and (ii) a second electrode. The access device is configured to select and deselect the cell. The access device includes (i) a first terminal connected to a first contact and (i) a second terminal connected to a second contact. The second contact is connected to the second electrode of the resistive element via a third contact. The third contact includes (i) a first surface in contact with the second contact and (ii) a second surface in contact with the second electrode. The first surface defines a first surface area, and the second surface defines a second surface area. The first surface area is greater than the second surface area.
Abstract:
In an embodiment, a method comprises: forming a fin feature on a portion of a surface of a substrate; forming a first region of polycrystalline silicon over a first portion of the fin feature; forming a second region of polycrystalline silicon over a second portion of the fin feature; forming a third region of polycrystalline silicon over a third portion of the fin feature, wherein the third region of polycrystalline silicon is disposed between (i) the first region and (ii) the second region; forming a first spacer region between the first region and the third region; forming a second spacer region between the second region and the third region; removing the third region and at least a portion of the fin feature formed under the third region to thereby form a gap; and disposing a second dielectric material into the gap to form an isolation component.