Abstract:
In embodiments, a CPR chest compression system includes a retention structure that can retain the patient's body, and a compression mechanism that can perform automatically CPR compressions and releases to the patient's chest. The compression mechanism can pause the performing of the CPR compressions for a short time, so that an attendant can check the patient. The CPR system also includes a user interface that can output a human-perceptible check patient prompt, to alert an attendant to check the patient during the pause. An advantage can be when the attendant checks in situations where the condition of the patient might have changed, and an adjustment is needed. Or in situations where the patient may have improved enough to where the compressions are no longer needed.
Abstract:
Systems and methods for the use of unmanned aerial vehicles (UAVs) in medical emergencies are disclosed herein. The systems and methods include receiving at a first UAV an indication of a medical emergency and coordinating with a second UAV based on the second UAV's capabilities. The first UAV determines if the capabilities of the second UAV complement the capabilities of the first UAV based on the indicated medical emergency. The disclosed systems and methods deploy both the first and second UAVs to the medical emergency if the capabilities of the second UAV complement those of the first UAV.
Abstract:
A medical device such as an external cardiopulmonary resuscitation (CPR) device delivers chest compressions to a patient. The patient may shift and/or slide within the CPR chest compression structure if the CPR chest compression structure is tilted from the horizontal, however. A tilt module is used to sense a tilt event, report it to a user of the CPR chest compression machine, and cause the CPR chest compression machine, user, or tilt module to respond to the tilt event. Response can be pausing the CPR chest compression machine, having the user reposition the CPR chest compression machine, or the like.
Abstract:
In embodiments, an external medical device is intended to care for a patient. If it receives an input that signifies that ventilation artifact is present in a signal of the patient, it transmits a corrective signal responsive to the received input. In further embodiments, a patient signal is received, which is generated from a patient while the patient is or was receiving chest compressions at a frequency Fc, and also receiving ventilations at frequency Fv. At least one filter mechanism may be applied to the patient signal to substantially remove artifacts at a) frequency Fc, b) a higher harmonic of frequency Fc, and c) a third frequency substantially equaling frequency Fc plus or minus frequency Fv, while substantially passing other frequencies between them. As a result, the patient signal can be cleaner, for diagnosing the patient's state more accurately.
Abstract:
An apparatus and method is provided for a defibrillator that specifies treatment protocols in terms of number of chest compressions instead of time intervals. The defibrillator includes a connection port that is configured to attach with a plurality of electrodes that are capable of delivery of a defibrillation shock and/or sensing one or more physical parameters. An energy storage device capable of storing a charge is attached to the plurality of electrodes. A controller is coupled to the plurality of electrodes and the energy storage device, the controller is configured to provide CPR chest compression instructions in terms of the numbers of CPR chest compressions.
Abstract:
The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
Abstract:
A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
Abstract:
The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
Abstract:
An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
Abstract:
An external medical device can include a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions from a mechanical chest compression device. The processor can also be configured to select at least one filter mechanism, the mechanical chest compression device having a chest compression frequency f. The processor can be further configured to apply the at least one filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal, wherein the chest compression artifacts correspond to the chest compressions being delivered to the patient by the mechanical chest compression device, and wherein the at least one filter mechanism substantially rejects content in the frequency f plus content in at least one more frequency that is a higher harmonic to the frequency f.