Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
Abstract:
A semiconductor body (2), comprising a semiconductor layer sequence with an active region (3) suitable for generating radiation. The semiconductor layer sequence comprises two contact layers (6, 7), between which the active region is arranged. The contact layers are assigned a respective connection layer (12, 13) arranged on the semiconductor body. The respective connection layer is electrically conductively connected to the assigned contact layer. The respective connection layer is arranged on that side of the assigned contact layer which is remote from the active region. The connection layers are transmissive to the radiation to be generated in the active region, and the contact layers are of the same conduction type.
Abstract:
A method for fabricating a component having an electrical contact region on an n-conducting AlGaInP-based or AlGaInAs-based outer layer of an epitaxially grown semiconductor layer sequence, in which electrical contact material, which includes Au and at least one dopant, is applied and the outer layer is then annealed. The dopant contains at least one element selected from the group consisting of Ge, Si, Sn and Te. Also, a component is disclosed which includes an epitaxially grown semiconductor layer sequence with an active zone which emits electromagnetic radiation, the semiconductor layer sequence having an n-conducting AlGaInP-based or AlGaInAs-based outer layer, to which an electrical contact region is applied using the method described.
Abstract:
On an upper side there is a structured output coupling layer with flanks which are aligned at an angle between 60° and 88° with respect to a layer plane and which form boundaries for output coupling areas provided for the emergence of radiation and offset from one another. The output coupling areas are formed as flat truncated cones and can be rippled or zigzagged at the flanks, in order to increase the probability that the radiation produced strikes an outer interface of the output coupling layer more steeply than at a limiting angle of total reflection.
Abstract:
An opto-electronic component has a carrier element (3) with a connection region (5). Arranged on the carrier element (3) is a semiconductor chip (7). A contact region (10) is mounted on the surface (8) of the semiconductor chip (7) remote from the carrier element (3). The connection region (5) is electrically conductively connected to the contact region (10) by way of an unsupported conductive structure (13). A method for manufacturing an opto-electronic component is described.
Abstract:
A method for producing a lighting device may include: providing a first mount, fastening a second mount to the first mount, at least partially severing the second mount into at least two parts after fastening of the second mount to the first mount, and fastening at least two luminescence diode chips to that side of the second mount which is remote from the first mount.
Abstract:
An optoelectronic semiconductor component includes: at least one optoelectronic semiconductor chip, a leadframe having one a plurality of leadframe parts, at least two electrical connection means via which the semiconductor chip is electrically contact-connected to the leadframe, and a potting body, which is fitted to the leadframe and mechanically supports the latter, wherein the one or at least one of the leadframe parts is provided with a reflective coating at a top side, the semiconductor chip is fitted on the reflective coating at the top side, the leadframe includes at least two contact locations, onto which the connection means are directly fitted, and the contact locations are formed from a material that is different from the reflective coating.
Abstract:
An LED semiconductor element including at least one first radiation-generating active layer and at least one second radiation-generating active layer which is stacked above the first active layer in a vertical direction and is connected in series with the first active layer, wherein the first active layer and the second active layer are electrically conductively connected by a contact zone.
Abstract:
In a method for producing at least at least one area (8) with reduced electrical conductivity within an electrically conductive III-V semiconductor layer (3), a ZnO layer (1) is applied to the area (8) of the semiconductor layer (3) and subsequently annealed at a temperature preferably between 300° C. and 500° C. The ZnO layer (1) is preferably deposited on the III-V semiconductor layer (3) at a temperature of less than 150° C., preferably at a temperature greater than or equal to 25° C. and less than or equal to 120° C. The area (8) with reduced electrical conductivity is preferably located in a radiation emitting optoelectronic device between the active zone (4) and a connecting contact (7) in order to reduce current injection into the areas of the active zone (4) located opposite to the connecting contact (7).
Abstract:
An LED semiconductor body includes a number of at least two radiation-generating active layers. Each active layer has a forward voltage, wherein the number of active layers is adapted to an operating voltage in such a way that the voltage dropped across a series resistor connected in series with the active layers is at most of the same magnitude as a voltage dropped across the LED semiconductor body. The invention furthermore describes various uses of the LED semiconductor body.