Abstract:
A semiconductor device has a plurality of semiconductor die mounted to a temporary carrier. A prefabricated shielding frame has a plate and integrated bodies extending from the plate. The bodies define a plurality of cavities in the shielding frame. A penetrable material is deposited in the cavities of the shielding frame. The shielding frame is mounted over the semiconductor die such that the penetrable material encapsulates the die. The carrier is removed. An interconnect structure is formed over the die, shielding frame, and penetrable material. The bodies of the shielding frame are electrically connected through the interconnect structure to a ground point. The shielding frame is singulated through the bodies or through the plate and penetrable material to separate the die. TIM is formed over the die adjacent to the plate of the shielding frame. A heat sink is mounted over the plate of the shielding frame.
Abstract:
A semiconductor device has a semiconductor die and first conductive layer formed over a surface of the semiconductor die. A first insulating layer is formed over the surface of the semiconductor die. A second insulating layer is formed over the first insulating layer and first conductive layer. An opening is formed in the second insulating layer over the first conductive layer. A second conductive layer is formed in the opening over the first conductive layer and second insulating layer. The second conductive layer has a width that is less than a width of the first conductive layer along a first axis. The second conductive layer has a width that is greater than a width of the first conductive layer along a second axis perpendicular to the first axis. A third insulating layer is formed over the second conductive layer and first insulating layer.
Abstract:
A method for manufacture of an integrated circuit package system includes: providing an integrated circuit die having a contact pad; forming a protection cover over the contact pad; forming a passivation layer having a first opening over the protection cover with the first opening exposing the protection cover; developing a conductive layer over the passivation layer; forming a pad opening in the protection cover for exposing the contact pad having the conductive layer partially removed; and an interconnect directly on the contact pad and only adjacent to the protection cover and the passivation layer.
Abstract:
A semiconductor device has a protective layer formed over an active surface of a semiconductor wafer. The semiconductor die with pre-applied protective layer are moved from the semiconductor wafer and mounted on a carrier. The semiconductor die and contact pads on the carrier are encapsulated. The carrier is removed. A first insulating layer is formed over the pre-applied protective layer and contact pads. Vias are formed in the first insulating layer and pre-applied protective layer to expose interconnect sites on the semiconductor die. An interconnect structure is formed over the first insulating layer in electrical contact with the interconnect sites on the semiconductor die and contact pads. The interconnect structure has a redistribution layer formed on the first insulating layer, a second insulating layer formed on the redistribution layer, and an under bump metallization layer formed over the second dielectric in electrical contact with the redistribution layer.
Abstract:
A semiconductor device has a first semiconductor die with a sloped side surface. The first semiconductor die is mounted to a temporary carrier. An RDL extends from a back surface of the first semiconductor die along the sloped side surface of the first semiconductor die to the carrier. An encapsulant is deposited over the carrier and a portion of the RDL along the sloped side surface. The back surface of the first semiconductor die and a portion of the RDL is devoid of the encapsulant. The temporary carrier is removed. An interconnect structure is formed over the encapsulant and exposed active surface of the first semiconductor die. The RDL is electrically connected to the interconnect structure. A second semiconductor die is mounted over the back surface of the first semiconductor die. The second semiconductor die has bumps electrically connected to the RDL.
Abstract:
A semiconductor device has a plurality of semiconductor die mounted to a temporary carrier. A prefabricated shielding frame has a plate and integrated bodies extending from the plate. The bodies define a plurality of cavities in the shielding frame. A penetrable material is deposited in the cavities of the shielding frame. The shielding frame is mounted over the semiconductor die such that the penetrable material encapsulates the die. The carrier is removed. An interconnect structure is formed over the die, shielding frame, and penetrable material. The bodies of the shielding frame are electrically connected through the interconnect structure to a ground point. The shielding frame is singulated through the bodies or through the plate and penetrable material to separate the die. TIM is formed over the die adjacent to the plate of the shielding frame. A heat sink is mounted over the plate of the shielding frame.
Abstract:
A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the first semiconductor die. A penetrable adhesive layer is formed over a temporary carrier. The adhesive layer can include a plurality of slots. The semiconductor die is mounted to the carrier by embedding the bumps into the penetrable adhesive layer. The semiconductor die and interconnect structure can be separated by a gap. An encapsulant is deposited over the first semiconductor die. The bumps embedded into the penetrable adhesive layer reduce shifting of the first semiconductor die while depositing the encapsulant. The carrier is removed. An interconnect structure is formed over the semiconductor die. The interconnect structure is electrically connected to the bumps. A thermally conductive bump is formed over the semiconductor die, and a heat sink is mounted to the interconnect structure and thermally connected to the thermally conductive bump.
Abstract:
A semiconductor device is made by providing a semiconductor wafer having an active surface, forming an under bump metallization layer on the active surface of the semiconductor wafer, forming a first photosensitive layer on the active surface of the semiconductor wafer, exposing a selected portion of the first photosensitive layer over the under bump metallization layer to light, removing a portion of a backside of the semiconductor wafer, opposite to the active surface, prior to developing the exposed portion of the first photosensitive layer, developing the exposed portion of the first photosensitive layer after removing the portion of the backside of the semiconductor wafer, and depositing solder material over the under bump metallization layer to form solder bumps. The remaining portion of the first photosensitive layer is then removed. A second photosensitive layer or metal stencil can be formed over the first photosensitive layer.
Abstract:
A method of manufacturing a semiconductor device includes providing a wafer for supporting the semiconductor device. An insulation layer is disposed over a top surface of the wafer. The method includes forming a first interconnect structure over the top surface of the wafer with temperatures in excess of 200° C., forming a metal pillar over the wafer in electrical contact with the first interconnect structure, connecting a semiconductor component to the first interconnect structure, and forming encapsulant over the semiconductor component. The encapsulant is etched to expose a portion of the metal pillar. A buffer layer is optionally formed over the encapsulant. The method includes forming a second interconnect structure over the encapsulant in electrical contact with the metal pillar with temperatures below 200° C., and removing a portion of a backside of the wafer opposite the top surface of the wafer.
Abstract:
A semiconductor device is made by forming a first conductive layer over a sacrificial carrier. A conductive pillar is formed over the first conductive layer. An active surface of a semiconductor die is mounted to the carrier. An encapsulant is deposited over the semiconductor die and around the conductive pillar. The carrier and adhesive layer are removed. A stress relief insulating layer is formed over the active surface of the semiconductor die and a first surface of the encapsulant. The stress relief insulating layer has a first thickness over the semiconductor die and a second thickness less than the first thickness over the encapsulant. A first interconnect structure is formed over the stress relief insulating layer. A second interconnect structure is formed over a second surface of encapsulant opposite the first interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillar.