Abstract:
The invention relates to a phosphonium borate compound represented by Formula (I) (hereinafter, the compound (I)). The invention has objects of providing (A) a novel process whereby the compound is produced safely on an industrial scale, by simple reaction operations and in a high yield; (B) a novel compound that is easily handled; and (C) novel use as catalyst. Formula (I): (R1)(R2)(R3)PH.BAr4 (I) wherein R1, R2, R3 and Ar are as defined in the specification. The process (A) includes reacting a phosphine with a) HCl or b) H2SO4 to produce a) a hydrochloride or b) a sulfate; and reacting the salt with a tetraarylborate compound. The compound (B) has for example a secondary or tertiary alkyl group as R1 and is easily handled in air without special attention. The use (C) is characterized in that the compound (I) is used instead of an unstable phosphine compound of a transition metal complex catalyst for catalyzing C—C bond, C—N bond and C—O bond forming reactions and the compound produces an effect that is equal to that achieved by the transition metal complex catalyst.
Abstract:
Catalytic hydrochlorination system comprising at least one amine hydrochloride and at least one group VIII metal compound chosen from the group composed of mixtures of a platinum (IV) compound with tin (II) chloride, mixtures of a platinum (II) compound with triphenylphosphine oxide and mixtures of a palladium (II) compound with triphenylphosphine. This catalytic system is suitable for preparing vinyl chloride by reaction of acetylene with hydrogen chloride.
Abstract:
The invention relates to a phosphonium borate compound represented by Formula (I) (hereinafter, the compound (I)). The invention has objects of providing (A) a novel process whereby the compound is produced safely on an industrial scale, by simple reaction operations and in a high yield; (B) a novel compound that is easily handled; and (C) novel use as catalyst. Formula (I): (R1)(R2)(R3)PH.BAr4 (I) wherein R1, R2, R3 and Ar are as defined in the specification. The process (A) includes reacting a phosphine with a) HCl or b) H2SO4 to produce a) a hydrochloride or b) a sulfate; and reacting the salt with a tetraarylborate compound.The compound (B) has for example a secondary or tertiary alkyl group as R1 and is easily handled in air without special attention.The use (C) is characterized in that the compound (I) is used instead of an unstable phosphine compound of a transition metal complex catalyst for catalyzing C—C bond, C—N bond and C—O bond forming reactions and the compound produces an effect that is equal to that achieved by the transition metal complex catalyst.
Abstract:
Process for the hydroformylation of an optionally substituted ethylenically unsaturated compound by reaction thereof with carbon monoxide and hydrogen in the presence of a specific catalyst system which includes a source of Group VIII metal cations; a diphosphine ligand having the general formula (I): X1—R—X2 (I) wherein X1 and X2 each independently represent an optionally substituted cyclic group with at least 5 ring atoms, of which one is a phosphorus atom, and R represents a bivalent optionally substituted bridging group which is connected to each phosphorus atom by a sp2 hybridized carbon atom; an acid having a pKa
Abstract:
Process for the hydroformylation of an optionally substituted ethylenically unsaturated compound by reaction thereof with carbon monoxide and hydrogen in the presence of a specific catalyst system. The specific catalyst system comprises: (a) a source of group VIII metal cations; (b) a diphosphine ligand having the general formula I X1—R—X2 (I) wherein X1 and X2 each independently represent an optionally substituted cyclic group with at least 5 ring atoms, of which one is a phosphorus atom, and R represents a bivalent optionally substituted bridging group, connected to each phosphorus atom by a sp2 hybridized carbon atom; (c) an acid having a pKa
Abstract:
The present invention relates to a process for the carbon-carbon double bond isomerisation of a 2-alkyl-cyclohex-3-enyl alkyl or alkenyl ketone into a mixture comprising the corresponding 2-alkyl-cyclohex-2-enyl ketones and the corresponding 2-alkylene-cyclohexyl ketones, using as catalyst a ruthenium complex obtainable by the reaction of an appropriate ruthenium organometallic precursor and an acid.
Abstract:
The invention relates to a passivated hydrogenation catalyst that is embedded in a primary amine, a derivative thereof, and/or a nitrile, the process to make such catalysts, as well as the use of such catalysts in a hydrogenation process in which an amine or a derivative thereof is produced.
Abstract:
A catalyst for oxidative demercaptanization of hydrocarbon compositions, comprising 0.2–5% of an oxide selected from the group consisting of an oxide of a transition metal of group Ib, an oxide of a transition metal of group Vb, an oxide of a transition metal of group VIb, an oxide of a transition metal of group VIIb, a nickel oxide, a cobalt oxide, and a mixture of at least two of said oxides; 0.5–20% of a transition metal salt; 0.5–20% of a nitrogen-containing organic compound; and an inert component, the rest up to 100%; wherein, the above described catalyst is used for demercaptanization or sweetening of hydrocarbon compositions.
Abstract:
The invention relates to a catalytic method for the production of aliphatic and aromatic carbonyl compounds with at least one aldehyde or ketone function, whereby said compounds can also comprise at least one aldehyde and ketone function. A starting material comprising at least one aliphatic- and/or aromatic-bonded functional group of formula (I), where R1=H, alkyl or aryl, X=H, or a group which may be substituted by the sulphinyl group of a sulphoxide during the catalytic reaction, n=a whole number from 1 to 8, is oxidised in the presence of a sulphoxide and/or a sulphide and the presence of iron salts or redox pairs of iron/copper or silver/copper salts, by means of an oxidising agent with a redox potential of Eo>+2 V vs. NHE, whereby the sulphoxide or sulphide has a catalytic function. The method permits the production of carbonyl compounds, in particular, (poly)aldehydes and (poly)ketones with high selectivity, whereby the formation of alcohols and carboxylic acids, dimerisation products and other by-products is reduced to a minimum or essentially prevented. The final products obtained find application as important intermediates and final products.
Abstract:
A method for preparing hydroxyaromatic compounds brominated in the para-position, such as p-bromophenol, is disclosed. The method yields overall high process selectivity through isomeric equilibration and separation of the brominated products, thereby eliminating the need for high para selectivity in the products of catalytic oxybromination reactions of hydroxyaromatic compounds using oxygen, a bromine source, and an acidic medium in the presence of a metal catalyst. Furthermore, the invention provides an efficient method for recycling the metal catalyst, as well as reagents used in the bromination, to further reactions.