Abstract:
A vibration generating device that can make a relatively heavy vibration member produce sufficient vibration. A vibration generating device has: a vibration member; multiple actuators that are connected to the vibration member; and a stationary element that supports the vibration member via the multiple actuators. Each of the multiple actuators comprises: a supporting body to which the vibration member is fixed; a movable element; a first elastic member that is connected to the supporting body and the movable element; and a magnetic drive circuit (a first magnetic drive circuit and a second magnetic drive circuit) that makes the movable element move linearly back and forth relative to the supporting body. The multiple actuators are supported by the stationary element via a second elastic member. The first elastic member and the second elastic member comprise a gelatinous silicone gel or the like.
Abstract:
Provided is a broadband and large displacement angular vibrator, comprising an outer housing, a vibration table, a main spindle, a moving coil assembly, a magnetic circuit assembly, a holding brake assembly, a motor and closed loop control assembly thereof, an electric viscoelastic feedback control assembly, an air bearing, and an angular displacement sensor; the moving coil comprises a moving coil substrate and a coil; the moving coil substrate is fixed to the main spindle; the magnetic circuit assembly comprises a magnetic ring, a central magnetic pole, and magnets; the magnetic ring, central magnetic pole, magnets, and air gap form a closed magnetic circuit; the central magnetic pole is located inside the magnetic ring, the magnets are located between the magnetic ring and the central magnetic pole, and the magnets are attached to the central magnetic pole; the outer housing has the holding brake assembly; the holding brake assembly comprises a brake lining, an oil distribution sleeve, and an oil reservoir having a piston; the brake lining and the oil distribution sleeve enclose a hydraulic oil chamber; when the hydraulic oil is pressed into the hydraulic oil chamber from the oil reservoir, the magnetic circuit assembly brakes; when the hydraulic oil flows back to the oil reservoir, the magnetic circuit assembly rotates with the motor rotor. The present angular shaker has the advantage of being able to switch between intermediate-frequency and low-frequency, and has small output waveform distortion.
Abstract:
This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use magnetic reluctance forces to produce seismic energy. For example, pole pieces may be attached to one or more plates of a marine seismic source, and a wire coil may induce an attractive force between the pole pieces to cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed.
Abstract:
A plurality of micro-electro-mechanical system (MEMS) transducers in a phased array are coupled to a flexible substrate using carbon nanotubes (CNTs) for conformal ultrasound scanning. Each transducer comprises a cantilever, magnetic material deposited on the cantilever, and a solenoid positioned relative to the magnetic material. The carbon nanotubes are grown on the cantilever and mechanically couple the transducer to one side of the flexible substrate. The other side of the flexible substrate is applied to a surface of a part under inspection, and the transducers are electrically connected to a processer to cause movement of the cantilevers when the solenoids are energized by the processor. The movement of the cantilevers results in movement of the carbon nanotubes, which imparts a force to the flexible substrate that results in ultrasound waves, which permeate the part. Returns from the ultrasound waves are interpreted by the processor to generate images of the part.
Abstract:
An electronic device includes a housing having a plurality of surfaces and a plurality of vibration portions provided in the housing so as to be in contact with at least one of the plurality of surfaces. The plurality of vibration portions include a first vibration portion, which vibrates at a frequency included in a first frequency band, and a second vibration portion, which vibrates at a frequency included in a second frequency band that is different from the first frequency band.
Abstract:
This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use magnetic reluctance forces to produce seismic energy. For example, pole pieces may be attached to one or more plates of a marine seismic source, and a wire coil may induce an attractive force between the pole pieces to cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed.
Abstract:
An electronic device includes a housing having a plurality of surfaces and a plurality of vibration portions provided in the housing so as to be in contact with at least one of the plurality of surfaces. The plurality of vibration portions include a first vibration portion, which vibrates at a frequency included in a first frequency band, and a second vibration portion, which vibrates at a frequency included in a second frequency band that is different from the first frequency band.
Abstract:
A driving apparatus (100) is provided with: a first base part (110-1); a second base part (110-2); a first elastic part (120a-1, 120b-1); a driven part (130); a second elastic part (120a-2, 120b-2); and an applying part (160) which is configured to apply, to the second base part, an excitation force for rotating the driven part such that the driven part rotates while resonating around the axis along the one direction, at a resonance frequency determined by the second elastic part and the driven part, the applying part applies the excitation force such that the second base part vibrates and deforms in a shape of stationary wave along the another direction and the deformational vibration becomes resonance, the resonance frequency at which the second base part resonates is same as a resonance frequency of the driven part.
Abstract:
A sound wave generator includes a speaker control circuit and a speaker. The speaker control circuit includes a signal generating unit that is configured to generate an electric signal having a humming frequency property. The humming frequency property includes a plurality of frequencies that have an overtone relationship with respect to A Hz and are pitched at the A Hz, the A Hz being a target generation frequency and corresponding to a low pitch frequency in an audible range. The speaker generates a sound wave from the electric signal by applying the electric signal to a vibration plate that produces the sound wave.
Abstract:
In a notifying device comprising a notifying unit 2 having incorporated therein a vibrator to be resonated by a drive signal fed thereto, and a signal preparing circuit 5 for feeding the drive signal to the notifying unit 2, the signal preparing circuit 5 prepares a drive signal Dv varying in frequency within a predetermined range including the resonance frequency of the vibrator of the unit 2 and feeds the signal to the notifying unit 2. The variation of frequency of the drive signal is determined in correspond relation with a variation in the resonance frequency of the vibrator due to tolerances for specifications which govern the resonance frequency. The drive signal has an alternating waveform of rectangular waves or sine waves, and the frequency thereof varies periodically from 1.37 to 2.98 Hz. The notifying device achieves a satisfactory notifying effect despite the variation of the resonance frequency of the vibrator.