Abstract:
The invention includes a non-magnetic physical vapor deposition target. The target has at least 30 atom percent total of one or more of Co, Ni, Ta, Ti, Pt, Mo and W, and at least 10 atom percent silicon. The target also has one phase and not more than 1% of any additional phases other than said one phase. In another aspect, the invention includes a non-magnetic physical vapor deposition target consisting essentially of Co and/or Ni, silicon, and one phase.
Abstract:
Described is an in situ method for producing articles of metal aluminide or silicide by reactive sintering and vacuum hot pressing powders and products, such as sputtering targets, produced.
Abstract:
There are provided an inexpensive copper powder, which has a low content of oxygen even it has a small particle diameter and which has a high shrinkage starting temperature when it is heated, and a method for producing the same. While a molten metal of copper heated to a temperature, which is higher than the melting point of copper by 250 to 700° C. (preferably 350 to 650° C. and more preferably 450 to 600° C.), is allowed to drop, a high-pressure water is sprayed onto the heated molten metal of copper in a non-oxidizing atmosphere (such as an atmosphere of nitrogen, argon, hydrogen or carbon monoxide) to rapidly cool and solidify the heated molten metal of copper to produce a copper powder which has an average particle diameter of 1 to 10 μm and a crystallite diameter Dx(200) of not less than 40 nm on (200) plane thereof, the content of oxygen in the copper powder being 0.7% by weight or less.
Abstract:
There are provided an inexpensive copper powder, which has a low content of oxygen even it has a small particle diameter and which has a high shrinkage starting temperature when it is heated, and a method for producing the same. While a molten metal of copper heated to a temperature, which is higher than the melting point of copper by 250 to 700° C. (preferably 350 to 650° C. and more preferably 450 to 600° C.), is allowed to drop, a high-pressure water is sprayed onto the heated molten metal of copper in a non-oxidizing atmosphere (such as an atmosphere of nitrogen, argon, hydrogen or carbon monoxide) to rapidly cool and solidify the heated molten metal of copper to produce a copper powder which has an average particle diameter of 1 to 10 μm and a crystallite diameter Dx(200) of not less than 40 nm on (200) plane thereof, the content of oxygen in the copper powder being 0.7% by weight or less.
Abstract:
Reactor configurations may include one or more staged inlets and/or one or more staged outlets for gaseous and solid feedstocks. In one embodiment of the present disclosure, a reactor design for gas-solid reaction with one or more additional outlet for gas and/or solid phase is provided. In yet another embodiment, the design for a gas-solid reactor with one side inlet and two outlets for gas phase is described. In one embodiment, a reactor design with pairs of inlet and outlet for both gas and solid phase is provided. In another embodiment, a reactor design with one or more side inlets but only one outlet for gas phase is provided. In yet another embodiment, a reactor design with two inlets at the top/bottom of reactor and two side outlets for gaseous phase is described. In yet another embodiment, a reactor design with one or more side inlets and outlets for both gas and solid phases is provided.
Abstract:
A method for producing fine copper particles includes producing fine copper particles having a coating film containing cuprous oxide on a surface by heating copper or a copper compound in a reducing flame formed by a burner. The fine copper particles are produced by adjusting a mixing ratio between a combustible gas and a combustion supporting gas which form the reducing flame such that a volume ratio of CO/CO2 is in a range of 1.5 to 2.4.
Abstract:
While a molten metal of copper heated to a temperature, which is higher than the melting point of copper by 250 to 700° C. (preferably 350 to 650° C. and more preferably 450 to 600° C.), is allowed to drop, a high-pressure water is sprayed onto the heated molten metal of copper in a non-oxidizing atmosphere (such as an atmosphere of nitrogen, argon, hydrogen or carbon monoxide) to rapidly cool and solidify the heated molten metal of copper to produce a copper powder which has an average particle diameter of 1 to 10 μm and a crystallite diameter Dx(200) of not less than 40 nm on (200) plane thereof, the content of oxygen in the copper powder being 0.7% by weight or less.
Abstract:
The present application provides a combined additive manufacturing and machining system. The combined additive manufacturing and machining system may include an outer chamber, an additive manufacturing tool positioned within the outer chamber, a machining tool positioned within the outer chamber, and a cryogenic fluid source in communication with the machining tool.
Abstract:
A reaction vessel for making phlegmatized metal powder or alloy powder has a retort crucible with a heat-proof, coolable cover, a heatable reduction furnace into which the retort crucible may be inserted, and an inner crucible placed within the retort crucible and removable therefrom. At least one inlet is built into the coolable cover for adding a passivating gas. A heat-proof flange welded onto the retort crucible attaches the retort crucible to the heat-proof, coolable cover. A cooler welded onto a lower face of the heat-proof flange provides a cooling agent to the reaction vessel.