Abstract:
An Unmanned Aerial Vehicle (UAV) comprises a situational awareness system coupled to at least one onboard sensor and senses the location of other UAVs. A cooperative Radio Access Network (RAN)-signal processor is configured to process RAN signals cooperatively with at least one other UAV to increase the rank of the RAN channel and produce RAN performance criteria. A flight controller provides autonomous navigation control of the UAV's flight based on the relative spatial locations of other UAVs and the RAN performance criteria, which operates within predetermined boundaries of navigation criteria. The UAV can employ mitigation tactics against one or more UEs identified as a threat and may coordinate other UAVs to conduct such mitigations.
Abstract:
The invention relates to a launched aerial surveillance vehicle, more specifically to a grenade or under-slung grenade launcher (UGL) aerial surveillance vehicle, a surveillance system and methods of providing rapid aerial surveillance.The vehicle once deployed is capable of autonomous flight paths, with basic inputs to change the circular flight paths, so as to build up surveillance for an area of interest. The vehicle comprises at least one optical sensor, which may be IR or visible range, to survey the area of interest, and feed the images back to at least one remote user.
Abstract:
A method of emergency handling is provided for a vehicle engaged with an uninhabited aerial vehicle (UAV). The method can include collecting location information if emergency situation occurs. In emergency situations, the vehicle can determine whether an operation of uninhabited aerial vehicle (UAV) is allowed based on the location information and time information. After determining whether there is a flight space for the operation of uninhabited aerial vehicle (UAV) above a vehicle, the vehicle can transmit at least one of SOS and an emergency call into the uninhabited aerial vehicle (UAV).
Abstract:
An apparatus and method of charging and housing of an unmanned vertical take-off and landing (VTOL) aircraft is disclosed. The apparatus can accommodate an aircraft, and the apparatus includes a landing platform on which the aircraft lands, a housing portion to monitor state data by housing or charging the aircraft, and a sensor to assist in landing of the aircraft by allowing the aircraft to communicate with the apparatus. The apparatus enhances operational efficiency by reducing a travel time of the aircraft.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; a flight termination device; at least two separate power sources; a sensor; a processor; a pump; a valve; and an object that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
A method for automatically delivering a physical mail includes receiving, by an unmanned aerial vehicle from an unmanned aerial vehicle management system, a delivery information, the delivery information includes information about a first secure mailbox and information about a second secure mailbox, the first secure mailbox being related to a first target user, delivering the physical mail to the first secure mailbox, and rerouting the unmanned aerial vehicle carrying the physical mail from the first secure mailbox to the second secure mailbox in response to the physical mail being delivered to the first secure mailbox.
Abstract:
An unmanned aerial vehicle/unmanned aircraft system including an airframe; a plurality of rotor assemblies respectively extending from a plurality of arms connected to said airframe, said rotor assemblies each having a rotor thereon with at least one rotor blade; a landing gear extending from said airframe; and a flight controller disposed on said airframe; wherein said flight controller receives instructions for unmanned aerial vehicle/unmanned aircraft system control.
Abstract:
Certain embodiments herein relate to location verification for autonomous unmanned aerial vehicles (also referred to as “drones”). In some embodiments, an unmanned aerial vehicle engaged in autonomous flight may determine its location using a satellite-based navigation system. The location may be evaluated against location data obtained from one or more secondary factors, such as public broadcast beacons, cellular towers, wireless network identifiers, visual markers, or any combination thereof. If the location is determined to be invalid, the unmanned aerial vehicle may be instructed to take a mitigation action. Additionally, certain embodiments also include the verification of a flight plan for the unmanned aerial vehicle using secure no-fly logic to verify a flight plan does not violate no-fly zones. If the flight plan is verified, the flight plan may be signed using a cryptographic signature and provided to a navigation module that verifies the signature and executes the flight plan.
Abstract:
Systems and methods for controlling an unmanned aerial vehicle within an environment are provided. In one aspect, a system comprises one or more sensors carried by the unmanned aerial vehicle and configured to provide sensor data and one or more processors. The one or more processors can be individually or collectively configured to: determine, based on the sensor data, an environment type for the environment; select a flight mode from a plurality of different flight modes based on the environment type, wherein each of the plurality of different flight mode is associated with a different set of operating rules for the unmanned aerial vehicle; and cause the unmanned aerial vehicle to operate within the environment while conforming to the set of operating rules of the selected flight mode.
Abstract:
A system for landing a mobile platform, such as an Unmanned Aerial Vehicle (“UAV”) and methods for making and using the same. The system can land the UAV by applying a magnetic levitation force upon the UAV and adjusting the applied magnetic levitation force. The system can initiate a landing process to a designated docking station and can guide the UAV to an adjacency of the designated docking station. Once the UAV has entered the adjacency, the magnetic levitation forces can take control of the landing process. During the landing process, certain magnetic sensitive devices installed on the UAV and/or on the designated docking station can be protected by turning them off or by shielding them. The system overcomes disadvantages of currently-available landing systems by restricting a size and weight of the landing arrangements, as well as, avoiding potential damage to the UAV and the designated docking station.