Abstract:
Provided is a method for manufacturing a floating structure of a MEMS. The method for manufacturing a floating structure of a microelectromechanical system (MEMS), comprising the steps of: a) forming a sacrificial layer including a thin layer pattern doped with impurities on a substrate; b) forming a support layer on the sacrificial layer; c) forming a structure to be floated on the support layer by using a subsequent process; d) forming an etch hole exposing both side portions of the thin layer pattern; and e) removing the sacrificial layer through the etch hole to form an air gap between the support layer and the substrate.
Abstract:
The invention relates to a method of fabricating and electromechanical device on at least one substrate, the device including at least one active element and wherein the method comprises: a) making a heterogeneous substrate comprising a first portion, an interface layer, and a second portion, the first portion including one or more buried zones sandwiched between first and second regions formed in a first monocrystalline material, the first region extending to the surface of the first portion, and the second region extending to the interface layer, at least one said buried zone being made at least in part out of a second monocrystalline material so as to make it selectively attackable relative to the first and second regions; b) making openings from the surface of the first portion and through the first region, which openings open out to at least one said buried zone; and c) etching at least part of at least one buried zone to form at least one cavity so as to define at least one active element that is at least a portion of the second region between a said cavity and said interface layer; and wherein the first and second portions of the substrate are constituted respectively from first and second substrates that are assembled together by bonding, at least one of them including at least one said interface layer over at least a fraction of its surface.
Abstract:
A wafer for use in a MEMS device having two doped layers surrounding an undoped layer of silicon is described. By providing two doped layers around an undoped core, the stress in the lattice structure of the silicon is reduced as compared to a solidly doped layer. Thus, problems associated with warping and bowing are reduced. The wafer may have a pattered oxide layer to pattern the deep reactive ion etch. A first deep reactive ion etch creates trenches in the layers. The walls of the trenches are doped with boron atoms. A second deep reactive ion etch removes the bottom walls of the trenches. The wafer is separated from the silicon substrate and bonded to at least one glass wafer.
Abstract:
Methods for producing a MEMS device from a single silicon-on-insulator (SOI) wafer. An SOI wafer includes a silicon (Si) handle layer, a Si mechanism layer and an insulator layer located between the Si handle and Si mechanism layers. An example method includes etching active components from the Si mechanism layer. Then, the exposed surfaces of the Si mechanism layer is doped with boron. Next, portions of the insulator layer proximate to the etched active components of the Si mechanism layer are removed and the Si handle layer is etched proximate to the etched active components.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material that is selectively diffused with a dopant material or formed of a selectively oxidized metal sacrificial material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a diffused or oxidized sacrificial material.
Abstract:
A wafer for use in a MEMS device having two doped layers surrounding an undoped layer of silicon is described. By providing two doped layers around an undoped core, the stress in the lattice structure of the silicon is reduced as compared to a solidly doped layer. Thus, problems associated with warping and bowing are reduced. The wafer may have a pattered oxide layer to pattern the deep reactive ion etch. A first deep reactive ion etch creates trenches in the layers. The walls of the trenches are doped with boron atoms. A second deep reactive ion etch removes the bottom walls of the trenches. The wafer is separated from the silicon substrate and bonded to at least one glass wafer.
Abstract:
Provided is a method for manufacturing a floating structure of a MEMS. The method for manufacturing a floating structure of a microelectromechanical system (MEMS), comprising the steps of: a) forming a sacrificial layer including a thin layer pattern doped with impurities on a substrate; b) forming a support layer on the sacrificial layer; c) forming a structure to be floated on the support layer by using a subsequent process; d) forming an etch hole exposing both side portions of the thin layer pattern; and e) removing the sacrificial layer through the etch hole to form an air gap between the support layer and the substrate.
Abstract:
The present invention illustrates a bulk silicon etching technique that yields straight sidewalls, through wafer structures in very short times using standard silicon wet etching techniques. The method of the present invention employs selective porous silicon formation and dissolution to create high aspect ratio structures with straight sidewalls for through wafer MEMS processing.
Abstract:
A method of producing a semiconductor device is disclosed, in which a through hole is formed in the upper surface of a semiconductor substrate from the lower surface thereof, and an opening of a desired size is formed in a desired position on the upper surface of the substrate. A guide that functions as an etching stopper is formed in the semiconductor substrate. An opening having a width W2 is formed in the guide. The opening faces an opening in a mask used in the formation of a through hole, and the width W2 thereof is narrower than a width W4 of the opening in the mask. The direction in which etching progresses is controlled by the opening formed in the guide as etching is conducted from a lower surface of the substrate to an upper surface of the substrate, and thus deviations in the width W1 and position of an opening in the upper surface of the substrate can be controlled.
Abstract:
In a method for manufacturing a semiconductor component having a semiconductor substrate, a flat, porous diaphragm layer and a cavity underneath the porous diaphragm layer are produced to form unsupported structures for a component. In a first approach, the semiconductor substrate may receive a doping in the diaphragm region that is different from that of the cavity. This permits different pore sizes and/or porosities to be produced, which is used in producing the cavity for improved etching gas transport. Also, mesopores may be produced in the diaphragm region and nanopores may be produced as an auxiliary structure in what is to become the cavity region.