Abstract:
The present application discloses biodegradable polymers, to porous and other materials comprising such polymers, and to various medical uses of such materials, including use as a scaffold for supporting cell adhesion or the in-growth for regeneration of tissue. The polymer is of the formula A—O—(CHR1CHR2O)n-B wherein A is a poly(lactide-co-glycolide) residue, the molar ratio of (i) lactide units [—CH(CH3)—COO—] and (ii) glycolide units [—CH2—COO—] in the poly(lactide-co-glycolide) residue being in the range of 80:20 to 10:90, B is either a poly(lactide-co-glycolide) residue or hydrogen, C1-6-alkyl or hydroxy protecting groups, one of R1 and R2 is hydrogen or methyl, and the other is hydrogen, n is 10-1000, the molar ratio of (iii) polyalkylene glycol units [-(CHR1CHR2O)—] to the combined amount of (i) lactide units and (ii) glycolide units in the poly(lactide-co-glycolide) residue(s) is at the most 14:86, and the molecular weight of the copolymer is at least 20,000 g/mol.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, would dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rats. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Methods and compositions are described that provide three dimensional porous matrices as structural templates for cells. The porous matrices of the present invention have desirable mechanical properties suitable to a variety of applications, including platforms for in vitro cell cultivation, implants for tissue and organ engineering, and materials suitable for chromatography and filtration.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
A multi-cellular cellulose particle having a multiplicity of cells spaced from one another by cell membranes is described, which cells have a maximum inscribed sphere diameter of larger than 2 .mu.m. The cells have a continuous hole structure in which the cells communicate with one another through openings in the membranes separating two adjacent cells. The multi-cellular cellulose particle is prepared by forming drops of a solution of cellulose or a cellulose derivative, cooling the drops at a temperature lower than the solidification temperature of the solution to freeze the drops, and removing the solvent by extraction or nullifying the dissolving power of the solvent.
Abstract:
The invention relates to polyolefin foams consisting of polyolefins of ultrahigh molecular weight, i.e. weight-average molecular weight from about 4.times.10.sup.5 to 6.times.10.sup.6 g/mol and higher, and to a novel process for producing these foams by foaming a solution of a polyolefin of ultrahigh molecular weight in a solvent with the use of a physical or chemical blowing agent or of an inert gas blown into the solution, and cooling of the resulting foam to a temperature below the gelling temperature of the polyolefin. If appropriate, these foams can be provided wholly or partially with a smooth skin on their surface by superficial cooling, if appropriate under the action of pressure. These foams are distinguished by high tensile strength and impact strength values, shock-absorbing properties, low glass transition temperatures, low embrittlement at low temperatures and high chemical resistance, and they are used especially as mechanical and acoustic insulating materials, materials of construction, filter agents and implantation materials.