Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
A pneumatic tire for a passenger car includes a belt layer and a belt cover layer formed by winding a steel cord member in the tire circumference direction on the outer peripheral side of the belt layer. The steel cord member has a structure in which element wires made of steel and having a diameter smaller than 0.18 mm are twisted together to form each strand and the strands are twisted together in the same direction as the direction of twisting of the element wires. The twist pitch on each of the strands is smaller than the twist pitch on the steel cord member, the twist pitch on the strand is 1.0 mm to 2.1 mm, and the twist pitch on the steel cord member is 2.0 mm to 5.25 mm.
Abstract:
Metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), wherein said cord has the following characteristics (d1, d2, p1 and p2 are expressed in mm): 0.20
Abstract:
An elongation cord adapted for the reinforcement of elastomer structures has a polymer core and three to nine strands twisted around the core with a cord twisting step in a cord twisting direction. At least one of the strands a first group of filaments and a second group of filaments. The first group of filaments is twisted with a first twisting step in a first twisting direction and the second group of filaments is twisted with a twisting step in a second twisting direction. The first twisting step is different from the second twisting step or the first twisting direction is different from the second twisting direction, or both. The first twisting direction is equal to the cord twisting direction and the first twisting step is equal to the cord twisting step.
Abstract:
An elongation cord (10) adapted for the reinforcement of elastomer structures has a polymer core (12) and three to nine strands (14) twisted around the core with a cord twisting step in a cord twisting direction. At least one of the strands (14) has a first group (16) of filaments (17, 18) and a second group (20) of filaments (21, 22). The first group (16) of filaments (17, 18) is twisted with a first twisting step in a first twisting direction and the second group (20) of filaments (21, 22) is twisted with a second twisting step in a second twisting direction. The first twisting step is different from the second twisting step or the first twisting direction is different from the second twisting direction, or both. The first twisting direction is equal to the cord twisting direction and the first twisting step is equal to the cord twisting step.
Abstract:
A steel cord (10) comprises a core with one or more core steel filaments (12) and further comprises a first layer of intermediate steel filaments (14) twisted around the core, and a second layer of second steel filaments (18) twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer (16) with a minimum thickness of 0.010 mm. The polymer (16) reduces the fretting between the coated intermediate steel filaments (14) and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
A steel cord for reinforcement of a radial tire and a radial tire employing the same are disclosed. The steel cord is made of more than three steel filaments of which one or two filaments are regularly twisted, the other filaments are open-twisted and each filament is twisted in same direction. Each steel filament using carbon steel has the carbon content of 0.7 to 0.96 wt %, the tensile strength of the filament is in the range of 260 to 380 kgf/mm2, the twisting pitch is 10 to 20 mm, and each filament is plated with brass. The topping characteristic is improved and the uniformity of tire is enhanced.
Abstract translation:公开了一种用于加强子午线轮胎的钢丝帘线和使用其的子午线轮胎。 钢帘线由三根以上的钢丝制成,其中一根或两根长丝被规则地扭曲,另一根长丝是开放扭曲的,每根细丝沿相同方向扭转。 使用碳素钢的每根钢丝的碳含量为0.7〜0.96重量%,长丝的拉伸强度为260〜380kgf / mm 2,扭转间距为10〜20mm, 黄铜。 提高了顶部特性,提高了轮胎的均匀性。
Abstract:
A pneumatic tire comprises a tread portion, a pair of sidewall portions, a pair of bead portions, and a carcass ply of steel cords extending between the bead portions through the tread portion and sidewall portions. Each of the carcass cords comprises a number nullnnull of steel filaments each having a diameter (d) of from 0.17 to 0.40 mm. The steel filaments are twisted together to have a null1nullnnull bundle-twist structure or an interlace-twist structure. In a vicinity of the maximum tire section width point P of each of the sidewall portions, a sectional shape coefficient S of each carcass cord is set in a range of from 0.5 to 0.9, wherein the sectional shape coefficient S is (d2nulln)/(L1nullL2), nullnnull is the number of the filaments, nulldnull is the average of the diameters of the filaments, nullL1null is the largest measure of distance between two extremities of the cord which occurs in a direction in a cross section of the cord, and nullL2null is the measure of distance between two extremities of the cord in a direction perpendicular to the above-mentioned direction.
Abstract:
A steel cord for the reinforcement of rubber article having M parallel+N structure consists of a core of two steel filaments and a single sheath of seven or eight steel filaments, wherein diameters of core filament and sheath filament and twisting pitch have specified ranges, respectively.
Abstract:
The invention is directed to several embodiments of metallic cord for the reinforcement of tires wherein one or more coaxial layers of metallic filaments are arranged around the metallic core filaments and twisted in the same direction at the same pitch. In one embodiment, the ratio of the diameter of the core filaments to the layer filaments is at least 1.28. In another embodiment, two of the core filaments have a first diameter and the third core filament has a second diameter smaller than the first diameter daimeter. In still another embodiment, two of the core filaments have a first diameter and a third of the core filaments has a second diameter smaller than the first diameter while the coaxial layer filaments have a third diameter equal to the second diameter. In another embodiment, the core has three core filaments twisted about each other and a coaxial layer of eight layer filaments arranged around the core filaments. In yet another embodiment, the core filaments have a first diameter and the layer filaments have a second diameter which is larger than the first diameter.