Abstract:
A door machine having an electric motor and a chain disk locking mechanism. The chain disk locking mechanism includes a chain disk, an engaging rotary block, a stationary shaft and a plurality of moving pins. When the chain disk is pulled to rotate, the fixed pins of the chain disk press the moving pins so as to push the engaging rotary block to rotate with the stationary shaft together. When the stationary shaft is pulled to rotate, the engaging rotary block prohibits the moving pins from rotation. When the chain disk is pulled manually, the rolling door can be rolled upward or downward; when cease pulling the chain disk, braking is immediately effected so as to prevent the rolling door from moving upward or downward. Hence, the clutch mechanism can be omitted for cost saving and the structure of the mechanism can be simplified.
Abstract:
A high-speed door assembly has a shaft or drum having a longitudinal axis which is configured so that the longitudinal axis is parallel with a wall to which the door assembly is mounted. A flexible door panel is attached to the shaft or drum so as to be capable of being wound and unwound about the drum for selectively permitting and prohibiting access through an opening in the wall to which the door assembly is mounted, the door panel being wound on the shaft or drum in an orientation such that the door panel defines at least one vertical plane when unwound from the shaft or drum, the vertical plane being spaced further from the wall to which the door assembly is mounted than the longitudinal axis of the shaft or drum. The door panel preferably having at least a portion of its width being substantially equal to or less than the width of the opening and is preferably used with guides which extend into the width of an opening passage of a door while being able to retreat, retract or collapse from their position extended into the door width upon experiencing an impact by an atypical force which can dislodge the door panel from the guides.
Abstract:
A sensor device is proposed for monitoring a mobile moving element, guided in a guide, with respect to undesired collisions of the moving element with an object which is located in a monitoring range, having at least two sensors for sensing the object, wherein the sensors comprise a transmitter and a receiver for emitting and receiving electromagnetic rays, wherein the sensors are arranged one next to the other in such a way that they can be mounted parallel to the guide, and the sensors are also oriented in such a way that the rays emitted by them penetrate the monitoring range. In order to enable improved obstacle recognition, the sensors are embodied as distance sensors for determining the distance from the object. In addition, a safety device, a door and a method for monitoring the movement are proposed.
Abstract:
Insulated tracks for use with loading dock doors are disclosed herein. In one embodiment, an insulated door track configured in accordance with the present disclosure includes a first insulator, such as a plastic material, applied to a surface of the door track that extends adjacent to the loading dock door in the closed position. A second insulator, such as a radiant barrier comprised of a thin film of a reflective material, such as aluminum, can be applied to an opposing surface of the first insulator to prevent or at least reduce radiant energy losses through the track. A gap between the first insulator and the door jamb can be sealed with a third insulator, such as a suitable strip of foam.
Abstract:
Systems and methods for controlling blind systems and other systems with moving parts are disclosed. Certain systems and methods couple to a blind system, and include one or more transceiving, processing, sensor, motion delivery, power delivery, and various other components for collectively or individually controlling a blind system to open or close its blinds. Certain systems and methods utilize preprogrammed control instructions stored locally, or user-initiated control signals received from remote devices to control the blind system.
Abstract:
A hinge mechanism includes a first hinge element, a second hinge element, and a locking element. The first and second hinge elements each include a plate portion and a plurality of substantially parallel fingers spaced from one another. The pluralities of substantially parallel fingers interlock with one another along a pivot axis such that the first and second hinge elements are rotatable relative to one another about the pivot axis between an extended position and a folded position. The locking element extends substantially parallel to the pivot axis and may be configured to releasably engage a receiving portion in one of the pluralities of substantially parallel fingers when the first and second hinge elements are in the extended position to lock the first and second hinge elements relative to one another. A collapsible ascension ski having such a hinge mechanism as well as related methods and kits are also disclosed.
Abstract:
An example of a door with a pliable curtain includes various washdown features that make the door particularly suitable for use in food and drug related environments that demand cleanliness. To prevent product contamination, such as bacteria and other microorganisms, some examples of the door include a curtain storage track with a spiral groove machined in a unitary block of plastic, a ventilated side frame with a removable curtain guide track and a removable seal, and various curtain seams that not only join multiple sheets of the curtain together but also promote and strategically direct liquid runoff to avoid creating water-holding surfaces and to prevent liquid from dripping on products passing through the doorway.
Abstract:
A door machine mechanism of the fireproof door comprises a force exerted end which is activated to roll a rotary axle and a loading end for receiving the weight of the door curtain. The rotary axle comprises an internal axle and two external axles. The force exerted end and the loading end are applied on the internal axle and the external axle respectively. The internal axle and the external axle are normally coupled via a clutch mechanism. A torsion spring brake mechanism is used to normally brake the rotary axle against the load of the loading end by changing the inner diameter of the torsion spring, or when the torsion spring brake mechanism is subjected to an external force from the force exerted end, the rotary axle is released. As such, the clutch mechanism is controlled to interrupt the coupling of the internal axle and the external axle in the event of the fire alarm such that the door curtain falls and shuts the fireproof door.
Abstract:
A drive unit for a door or a gate includes an electric motor, a detection unit for detecting the position of the door or gate, the detection unit being coupled to the motor and providing an identical pulse sequence with every rotation of the motor, wherein the duration of one pulse in the sequence is different from the duration of the other pulses in the sequence, which are equal. All detected pulses are stored in a non-volatile memory. The drive unit includes an electronic control and regulating circuit including an output stage for the electric motor and at least one memory, in which an operational program is stored providing a programmable learning procedure for an opening and closing movement of the door or gate based on the pulses provided by the detection unit.
Abstract:
A connection assembly is provided for interconnecting to a frame. The connection assembly including a generally flat plate. The plate is defined by an inner face, an outer face and a first pair of bolt-receiving bores therethrough. The pair of bolt-receiving bores extend between the inner face and the outer face along bore axes at acute angles to the outer face. A first lip extends from the inner face of the plate along a first axis and a second lip extends from the inner face of the plate along a second axis generally perpendicular to the second axis.