Abstract:
A large-diameter-side end surface (104a) of a cotter (104) can be supported by a cotter holder (32) from below through inserting a shaft member (102) along an inner periphery of the cotter (104) from above the cotter (104). In this state, a protrusion (104b) of the cotter (104) and an annular groove (102a) of the shaft member (102) are fitted to each other, and the cotter (104) and a retainer (103) are taper-fitted to each other. Consequently, the cotter is prevented from being unstable, and hence it is possible to assemble the retainer (103) and the cotter (104) to the shaft member (102) with good accuracy.
Abstract:
A method of manufacturing a lift transmitting component (2), particularly for a gas exchange valve train or a fuel pump drive of an internal combustion engine (1), is provided, The lift transmitting component includes a housing (6), a bearing pin (7) fixed in a reception bore (9) of the housing (6) and a roller (8) mounted through a sliding or a rolling bearing on the bearing pin (7). The bearing pin is core-hardened over an entire axial length to a core hardness of at least 650 HV, and pin ends (10) of the core-hardened bearing pin are radially widened relative to the reception bore for enabling a connection of the bearing pin to the housing (6) through positive engagement. The hardness of the bearing pin is at the most 780 HV, the radial widening of one of the pin ends being realized with a shaping die (11) which travels axially parallel to the bearing pin (7) and applies a force to the pin end in a transition region between a periphery and a front end surface of the bearing pin.
Abstract:
A surface hardening material being excellent in impact resistance and having abrasion resistance is provided. Provided are: a high-toughness cobalt-based alloy containing 25.0 to 40.0 mass % of Cr, 0.5 to 12.0 mass % of a sum of W and/or Mo, 0.8 to 5.5 mass % of Si, and 0.5 to 2.5 mass % of B, 8.0 mass % or less of each of Fe, Ni, Mn, and Cu, and 0.3 mass % or less of C, the sum amount of Fe, Ni, Mn, and C being 10.0 mass % or less, and the remainder comprising 48.0 to 68.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
Abstract:
An adjustable camshaft sprocket assembly includes a hub and a sprocket body secured to the hub. A stud-receiving opening is defined in one of the hub flange and the sprocket body, and a tool-receiving opening is defined in the other of the hub flange and the sprocket body. The tool-receiving opening is aligned with the stud-receiving opening and is adapted to receive a body portion of an adjustment tool, and the stud-receiving opening is adapted to receive an eccentric stud of the adjustment tool. Either the stud-receiving opening or the tool-receiving opening is elongated. Rotation of the adjustment tool when its body is located in the tool-receiving opening and its eccentric stud is located in the stud-receiving opening causes relative angular movement between the hub and the sprocket body. One or more fasteners are used to immovably secure the sprocket body to the hub after adjustment. A tool includes cylindrical base, a driving head, and an eccentric stud. The stud comprises a spring pin press-fit into a bore.
Abstract:
An internal combustion engine having a cylinder head and a cylinder head cover, wherein in order to activate charge cycle valves, at least one rotatably mounted cam shaft is provided with at least one sliding cam which can be slid axially on the respective cam shaft, wherein the respective sliding cam has at least one slotted link section with at least one groove, wherein in order to bring about axial sliding of the respective sliding cam, an actuator is provided, and wherein after axial sliding on the respective cam shaft, the respective sliding cam can be latched in its axial relative position relative to a charge cycle valve to be activated by a locking device which has a first latching element with a plurality of latching depressions and at least one second latching element which interacts with the first latching element.
Abstract:
An adjustable camshaft sprocket assembly includes a hub and a sprocket body secured to the hub. A stud-receiving opening is defined in one of the hub flange and the sprocket body, and a tool-receiving opening is defined in the other of the hub flange and the sprocket body. The tool-receiving opening is aligned with the stud-receiving opening and is adapted to receive a body portion of an adjustment tool, and the stud-receiving opening is adapted to receive an eccentric stud of the adjustment tool. Either the stud-receiving opening or the tool-receiving opening is elongated. Rotation of the adjustment tool when its body is located in the tool-receiving opening and its eccentric stud is located in the stud-receiving opening causes relative angular movement between the hub and the sprocket body. One or more fasteners are used to immovably secure the sprocket body to the hub after adjustment. A tool includes cylindrical base, a driving head, and an eccentric stud. The stud comprises a spring pin press-fit into a bore.
Abstract:
In one aspect, the invention is directed to a belt tensioner for tensioning a belt, comprising a pivot shaft that is fixedly mountable with respect to an engine block of an engine, a tensioner arm rotatably mounted to the pivot shaft for pivoting about a tensioner arm axis in a first direction and in an opposing second direction, a pulley rotatably mounted to the tensioner arm for rotation about a pulley axis, and a tensioner spring positioned to bias the tensioner arm in the first direction, wherein the tensioner spring has a first end and a second end, wherein the first end is engaged with the tensioner arm, and a micro adjustment mechanism that is operatively connected to control the position of the second end of the tensioner spring so as to control the tension in the tensioner spring.
Abstract:
A rocker arm may include a first arm defining a first longitudinal bore and a second arm defining a second longitudinal bore. The rocker arm may house a locking assembly including a first actuation pin extending through a first radial passage in the rocker arm, a second actuation pin extending through a second radial passage in the rocker arm, and a first lock pin located in the first longitudinal bore between the first and second actuation pins. An actuation assembly may be engaged with the first and second actuation pins and may be linearly displaceable between first and second actuation positions. The first and second arms may be rotatable relative to one another when the actuation assembly is in the first actuation position and may be fixed for rotation with one another when the actuation assembly is in the second actuation position.
Abstract:
A cover has an aperture through which an accessory gains access to the interior side of the cover and a cavity. The accessory may be any kind of sensor or actuator. To secure the accessory to the cover, an adapter coupled to the cover is provided. In one example, the adapter has a cylindrical connection section that is spin welded into place in the cavity. In another example, the adapter has self-tapping threads that engage with the surface surrounding the cavity. The adapter also has tabs extending outwardly from the cover, the tabs having a proximate section and an engagement section. The accessory has a retaining orifice that couples with the tabs in a snap-fit relationship to secure the accessory to the cover.
Abstract:
In a lift amount adjusting device in a valve-operating mechanism which changes at least a lift amount, a rocker arm is rockably arranged in a driving-force transmitting path for transmitting a driving force of a valve cam to an engine valve, and a jig abuts on the rocker arm to establish a rocking fulcrum in place of a hydraulic tappet which generates an urging force for adjusting a clearance of the driving-force transmission path. Even when an engine is stopped to make the hydraulic tappet inoperative, the jig secures a rocking fulcrum of the rocker arm, thereby enabling adjustment of the lift amount of the intake valve. Also, a load acting on the rocker arm during the adjustment of a lift amount of the intake valve is supported by the jig, and is not transmitted to the hydraulic tappet.