Abstract:
According to one embodiment, a liquid dispensing system includes a pressure chamber comprising a liquid space and a vapor space, and a liquid dispenser. A first and second orifice located in a bottom portion wall of the pressure chamber and each coupled to a vapor conduit extending into the vapor space of the pressure chamber form passageways between the first and second orifice and the vapor space. A third orifice of equal to or greater than approximately two inches diameter is located in the bottom portion wall of the pressure chamber. The third orifice is coupled to a liquid supply inlet port of the liquid dispenser; the second orifice is coupled to a liquid bypass port of the liquid supply pipe; and the first orifice is coupled to a vapor release port of the liquid dispenser.
Abstract:
A lightweight intermodal or road trailer based system for transporting refrigerated gaseous fluids is provided. The system includes an enclosed and insulated transportation housing, and a plurality of low-temperature resistant type 4 pressure vessels. The pressure vessels are at least three feet in diameter secured within the transportation housing for containing the gaseous fluids.
Abstract:
A method and system for installing and maintaining submerged cryogenic pumps is disclosed. The submerged pump may be positioned within a product storage vessel. Alternatively the submerged pump may be positioned within a product storage vessel with a sump that is integral with and not removable from the vessel. The pump may used for the movement of products, such as cryogenic liquids, including but not limited to, nitrogen, argon, ethylene, natural gas, nitrous-oxide, carbon-monoxide, hydrogen, helium, and carbon-dioxide. Superior results are obtained with respect to access, maintenance and handling of the pump within a product storing vessel.
Abstract:
Disclosed is an improved analytical method that can be utilized by hydrogen filling stations for directly and accurately calculating the end-of-fill temperature in a hydrogen tank that, in turn, allows for improvements in the fill quantity while tending to reduce refueling time. The calculations involve calculation of a composite heat capacity value, MC, from a set of thermodynamic parameters drawn from both the tank system receiving the gas and the station supplying the gas. These thermodynamic parameters are utilized in a series of simple analytical equations to define a multi-step process by which target fill times, final temperatures and final pressures can be determined. The parameters can be communicated to the station directly from the vehicle or retrieved from a database accessible by the station. Because the method is based on direct measurements of actual thermodynamic conditions and quantified thermodynamic behavior, significantly improved tank filling results can be achieved.
Abstract:
Disclosed is an improved analytical method that can be utilized by hydrogen filling stations for directly and accurately calculating the end-of-fill temperature in a hydrogen tank that, in turn, allows for improvements in the fill quantity while tending to reduce refueling time. The calculations involve calculation of a composite heat capacity value, MC, from a set of thermodynamic parameters drawn from both the tank system receiving the gas and the station supplying the gas. These thermodynamic parameters are utilized in a series of simple analytical equations to define a multi-step process by which target fill times, final temperatures and final pressures can be determined. The parameters can be communicated to the station directly from the vehicle or retrieved from a database accessible by the station. Because the method is based on direct measurements of actual thermodynamic conditions and quantified thermodynamic behavior, significantly improved tank filling results can be achieved.
Abstract:
A hydrogen fluoride supply unit which comprises a plurality of transportable hydrogen fluoride storage containers connected to a hydrogen fluoride supply line and a chemical plant comprising the hydrogen fluoride supply unit. Such chemical plant may be for the manufacture of fluorine, wherein the hydrogen fluoride supply line is connected to an electrolysis cell for producing fluorine by HF electrolysis of a molten salt electrolyte. A process for the manufacture of a chemical comprising using such chemical plant. Also a method for supply of hydrogen fluoride to a chemical plant, which comprises: (a) filling at least one transportable hydrogen fluoride storage container with hydrogen fluoride, (b) transporting the hydrogen fluoride storage container to the hydrogen fluoride supply unit, (c) connecting the hydrogen fluoride storage container to the hydrogen fluoride supply line, and (d) supplying hydrogen fluoride from the hydrogen fluoride storage container to the hydrogen fluoride supply line.
Abstract:
A method and system(s) are disclosed for integrating a new fuel into an operating transportation system in a continuous, seamless manner, such as diesel fuel being gradually replaced by compressed natural gas (“CNG”) in long haul trucks. Integration can be implemented using two enabling technologies. The first is an engine system capable of operating seamlessly on two or more fuels without regard to the ignition characteristics of the fuels. The second is a communications and computing system for implementing a fueling strategy that optimizes fuel consumption, guides the selection of fuel based upon location, cost and emissions and allows the transition from one fuel to another to appear substantially seamless to the truck driver.
Abstract:
A support structure of a ship tank includes: a curved surface facing an outer peripheral surface of a horizontal type cylindrical tank; and a pair of support units supporting the tank on the curved surface. Each of the support units includes: a plurality of cylindrical elements arranged in a circumferential direction of the tank such that an axial direction of each of the cylindrical elements coincides with a radial direction of the tank; a plurality of inner members each holding an end portion of a corresponding one of the cylindrical elements at the tank side; and a plurality of outer members each holding an end portion of a corresponding one of the cylindrical elements at an opposite side to the tank. The inner members are fixed to the tank. The outer members of one of the support units are configured such that displacement of the outer members in an axial direction of the tank relative to the curved surface is restricted. The outer members of the other one of the support units are configured to be slidable on the curved surface in the axial direction of the tank.
Abstract:
The invention relates to a method for filling up a storage tank (e.g., a vehicle tank) (20) with a gaseous, pressurized medium, in particular in the form of hydrogen, in which a supply tank system (2) for storing the hydrogen is connected with the storage tank (20) to be filled by way of a tank feed line (3) and a fueling valve (4), wherein, prior to filling up the storage tank (20) with aforesaid medium with the fueling valve (4) closed, a flow of the medium for cooling the tank feed line (3) is guided through the tank feed line (3) at a predefinable target temperature, and removed from the tank feed line (3) through a line (5) that branches away upstream from the fueling valve (4). In addition, the invention relates to a fueling facility (1) for filling up a storage tank (20).
Abstract:
A tower structure with storing capacity for at least one medium is described. The tower structure comprising at least two substantially vertically oriented support structures for forming the tower structure, wherein at least one of the support structures comprises at least one constructive pressure vessel for forming the support structure. A method for building the tower structure also is disclosed. The pressure vessel based tower structure may have applications e.g. in wind mills and solar thermal towers.