Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
An optical receiver, small and inexpensive, is used for a WDM transmission system in place of a wavelength demultiplexer. In the receiver, a light-transmitting medium and a photodiode (PD) are placed on the same substrate, a wavelength-selecting filter is attached perpendicularly or obliquely to the end face of or to a cut section at the midpoint of the medium, the filter transmits only the assigned wavelength included in the incident light having multiplexed wavelengths, and the PD detects only the assigned wavelength. With an optical fiber, the fiber can be housed in a ferrule. In this case, the filter is inserted into a filter-supporting hole provided at a midpoint of the ferrule, the ferrule is fixed in a groove formed on the substrate, and an optical pathway-changing groove formed on the substrate reflects light having emerged from the optical fiber to introduce it into the PD.
Abstract:
A method of forming a microlens including, in one aspect, depositing a substantially non-photo-imageable microlens material over an area of a chip, a portion of which contains an array of photosensitive circuits, and patterning the microlens material over the array of photosensitive circuits to define a microlens over each photosensitive circuit.
Abstract:
Photodetectors having low reflectivity triangular groove, surface relief gratings on homogenous material or one layer of a heterostructure. Preferably, the photodetector is a PIN photodiode in which the p-type layer is triangularly grooved. The surface relief gratings have an optical repeat distance greater than the wavelength of light which impinges on the photodetector surface. Thus, zero order backward diffracted waves are not coupled into optical reflections which would thereby decrease the optical return loss (ORL). Furthermore, the surface relief gratings have minimum side-wall angles to limit reflection at the heterostructure interfaces from contributing to the ORL. The side-angles of the gratings are chosen to ensure that the angle of the higher order backward diffracted wave is greater than the capture angle of an optical receiver into which the photodetector is incorporated. The free-space depth of the grooves is a half-wavelength of the light impinging on the photodetector. Additionally, a novel ion milling technique is disclosed. This technique involves providing a rectangular groove grating initially etched by conventional chemical etching and photoresistive techniques and then ion milling at particular ion mill angles to obtain triangular groove surface relief gratings provided in accordance with this invention.
Abstract:
A radiation spot position sensor utilizing a diffuse material upon which a spot of radiation impinges and diffuses from that point outwardly along the material to the two ends thereof in a proportion indicative of the linear position of the spot along the sensor so as to be detected by radiation sensing devices located at the ends to produce and output that can be used to determine the linear position of the spot.
Abstract:
A high efficiency fiber-shaped detector having a longitudinally extending core transparent to the wavelength of an incoming beam of electromagnetic radiation. Circumscribing the core and deposited thereon is an extremely thin layer of photosensitive material, an extremely thin layer of insulation and an extremely thin layer of reflective material. The photosensitive layer converts the electromagnetic radiation into an electrical signal which is transmitted to a processing system. Upon receiving the incoming beam of electromagnetic radiation, the reflective layer reflects this beam so that the beam passes through the photosensitive layer many times. Consequently, it is possible to provide a reliable indication of beam intensity. Modified embodiments of the above described detector also provide information with respect to the angularity and alignment of the input beam of electromagnetic radiation.
Abstract:
Two photoelectric detector elements, having substantially different response wavelengths, are mounted in a housing in cascade relationship. The outer element is selected to be transparent to the response wavelength of the inner element and it is provided with an integral filter that is transmissive at the response wavelength of the inner element. Anti-reflective coatings are used to minimize reflective losses.
Abstract:
The present invention relates to photo-detectors. The invention resides in that on the photo-sensitive side a photo-detector has a right prism made of an optically transparent material. The two approximately parallel bases of the prism are bounded by a side surface containing an entrance face through which a light beam is admitted, a reflecting face which together with the base and photo-sensitive layer participates in the reflections of the admitted light beam, and at least one additional reflecting face. The edge of the entrance face, which is a side of the base of the right prism, is unparallel to the first reflecting side face.