Abstract:
Avoiding an illumination light irregularity to the utmost under increasing degree of integration and the memory capacity by suppressing a light amount irregularity on the illumination pupil plane to the utmost, unable to be adjusted by a conventional method. When the light amount irregularity on the illumination pupil plane which is the exit surface of the optical fiber is relatively large, focus of the imaging surface of the CCD camera is switched from the sample to the illumination pupil plane by a focus switching lens. The light amount irregularity is calculated and analyzed by the image processor. Based on the analyzed result, the exit surface position of the optical fiber is adjusted in the illumination optical system. In this manner, the illumination pupil plane which is the exit surface of the optical fiber can be adjusted to an illumination pupil plane where the light amount irregularity is small.
Abstract:
An apparatus adapted for confocal imaging of a non-flat specimen comprising a coherent light source for producing a light beam, imaging optics adapted to focus the light beam into at least one spot on a surface of a specimen, and a detector adapted to receive and detect light reflected from the specimen surface. The imaging optics comprise at least one optical component located so that the light reflected from the specimen surface passes therethrough on its way to the detector. The optical component is movable so as to move the at least one spot, within a range of movement, to a number of distinct locations in a plane perpendicular to the apparatus' optical axis, within the detector's integration time.
Abstract:
An apparatus adapted for confocal imaging of a non-flat specimen comprising a coherent light source for producing a light beam, imaging optics adapted to focus the light beam into at least one spot on a surface of a specimen, and a detector adapted to receive and detect light reflected from the specimen surface. The imaging optics comprise at least one optical component located so that the light reflected from the specimen surface passes therethrough on its way to the detector. The optical component is movable so as to move the at least one spot, within a range of movement, to a number of distinct locations in a plane perpendicular to the apparatus' optical axis, within the detector's integration time.
Abstract:
An apparatus adapted for confocal imaging of a non-flat specimen comprising a coherent light source for producing a light beam, imaging optics adapted to focus the light beam into at least one spot on a surface of a specimen, and a detector adapted to receive and detect light reflected from the specimen surface. The imaging optics comprise at least one optical component located so that the light reflected from the specimen surface passes therethrough on its way to the detector. The optical component is movable so as to move the at least one spot, within a range of movement, to a number of distinct locations in a plane perpendicular to the apparatus' optical axis, within the detector's integration time.
Abstract:
A radiometer mounted on an aircraft, satellite or similar flying body for observing reflections or radiations of visible rays or infrared rays from the land or the sea. The radiometer has optical means for receiving and converging the visible rays or infrared rays, light-sensitive elements to which the converged rays are incident, means for changing the optical distance between the light-sensitive elements and the optical means, and means for generating correction data while the focal distance of the optical means is deviated from the light-sensitive surface of the light-sensitive elements.
Abstract:
The invention relates to a selective detector arrangement for the detecting of approximately point-like collected light in a predetermined wavelength region and angle of the field of vision, with an optical collector system which is made from a material passing the light at a predetermined wavelength range and with a light sensitive sensor element. The essence of the invention resides in that within a predetermined wavelength range for the optical collector system there is a characteristic focal point surface, which is spaced from the focal point surfaces characteristic of wavelengths lying outside of such range and that the sensor element is coupled with the optical collector system in optical fashion over an aperture which is formed in the focal point surface associated with the predetermined wavelength range, and wherein the size of the aperture substantially corresponds in size to the size of the focal point surface of the light falling at the predetermined angle of the field of vision and in the predetermined wavelength range.
Abstract:
Aspects of embodiments pertain to a sensing systems configured to receive scene electromagnetic (EM) radiation comprising a first wavelength (WL1) range and a second wavelength (WL2) range. The sensing system comprises at least one spectral filter configured to filter the received scene EM radiation to obtain EM radiation in the WL1 range and the WL2 ranges; and a self-adaptive electromagnetic (EM) energy attenuating structure. The self-adaptive EM energy attenuating structure may comprise material that includes nanosized particles which are configured such that high intensity EM radiation at the WL1 range incident onto a portion of the self-adaptive EM energy attenuating structure causes interband excitation of one or more electron-hole pairs, thereby enabling intraband transition in the portion of the self-adaptive EM energy attenuating structure by EM radiation in the WL2 range.
Abstract:
The disclosure discloses an electromagnetic driving module which includes a base, two magnetic elements, a wiring assembly, a reference element, and a sensor element. The two magnetic elements are arranged along a reference line and positioned at two sides of the base. The wiring assembly is connected to the base and arranged adjacent to the two magnetic elements. The reference element is positioned on the base. The sensor element is adjacent to the reference elements and configured to detect the movement of the reference element to position the base. A lens device using the electromagnetic driving module is also disclosed.
Abstract:
The present disclosure relates to a method for characterizing a light source. The method includes providing a light source to be characterized, collecting light emitted from the light source by using imaging optics, the imaging optics generating a pupil of the collected light emitted from the light source, generating an image of a pupil of light emitted only from a first surface area of the light source at a detector using the imaging optics, laterally shifting the light source and the imaging optics relative to each other and after the lateral shift, generating an image of a pupil of light emitted only from a second surface area of the light source at the detector using the imaging optics. The imaging optics includes a field stop between the light source and the detector to select a portion of the light source's surface from which light is imaged at a time.