Abstract:
According to the present invention, an electromagnetic wave detection device includes an optical waveguide, an electromagnetic wave input unit, and a phase difference measurement unit. According to the thus constructed electromagnetic wave detection device, an optical waveguide is a nonlinear crystal, and includes a branching portion for receiving a probe light pulse, and causing the probe light pulse to branch into two beams of branching light, and two branching light transmission portions for receiving the branching light from the branching portion, and transmitting the branching light. An electromagnetic wave input unit inputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] tilted by an angle generating Cherenkov phase matching with respect to a travel direction of the branching light into one of the two branching light transmission portions.
Abstract:
A steak tube has a container with an entrance plate and an output plate, a photocathode disposed in the container and configured to emit electrons according to light to be measured, the light having been incident through the entrance plate, and a sweep electrode disposed in the container, having a pair of deflection plates for generating an electric field and a connection lead connected to each deflection plate, and configured to sweep the electrons in a sweep direction along the output plate. An opposing of edges of the deflection plate in a direction of the output plate are formed so as to extend in a direction from the entrance plate to the output plate, the connection lead has a first connection portion electrically connected to the deflection plate, and the first connection portion is connected to the opposing of edges.
Abstract:
PICA test circuits are shown that include a first transistor and a second transistor laid out drain-to-drain, such that a gap between respective drain regions of the first and second transistors has a minimum size allowed by a given fabrication technology.
Abstract:
A method of calibrating an optical detector arrangement (38,42) comprises simultaneously generating a plurality of entangled photon pairs, such that one photon from each pair traverses a first path (36-38-42) and the other photon from each pair traverses a second path (36-40-44). The number of photons received along the first path is calculated using the detector arrangement (38,42), while the number of simultaneously-generated photons received along the second path is calculated using a second detector arrangement (40,44). These photon numbers are used to calculated an estimate of the detection efficiency (50) of the first detector arrangement (38,42).
Abstract:
A femtosecond laser based laser processing system having a femtosecond laser, frequency conversion optics, beam manipulation optics, target motion control, processing chamber, diagnostic systems and system control modules. The femtosecond laser based laser processing system allows for the utilization of the unique heat control in micromachining, and the system has greater output beam stability, continuously variable repetition rate and unique temporal beam shaping capabilities.
Abstract:
PICA test circuits are shown that include a first transistor and a second transistor laid out drain-to-drain, such that a gap between respective drain regions of the first and second transistors has a minimum size allowed by a given fabrication technology; a first NOR gate having an output connected to the drain region of the first transistor and accepting a first select signal and an input signal; and a second NOR gate having an output connected to the drain region of the second transistor and accepting a second select signal and the input signal. One of said NOR gates biases the connected transistor's drain region, according to the select signal of said NOR gate, to inhibit an optical emission when said connected transistor is triggered.
Abstract:
A high-fidelity device for single-shot pulse contrast measurement based on quasi-phase-matching includes a generating unit of sampling pulse, a high-fidelity cross-correlation unit of nonlinear SFG and a high-sensitivity signal detecting unit. An innovatively designed dot-mirror or dot-attenuator and correlating crystal. The dot-mirror or dot-attenuator is adopted to suppress the scattering noise, which is mainly induced by air scattering of the main peak of the correlation beam, to a level below the real pulse background. While the crystal is introduced into the device as a nonlinear correlation crystal to move two kinds of artifacts introduced by a correlation process respectively out of the temporal window and behind the main pulse, so that effects of the artifacts on measurement results are removed and the single-shot measurement of the contrast in a pulse leading edge is accomplished, without obviously affecting other parameters. The device is also fit for measuring contrasts of high-power lasers of various wavelengths.
Abstract:
Systems and methods are provided for monitoring materials using ultra fast laser pulses. Ultra fast laser pulses, such as femtosecond or attosecond laser pulses, are applied to the materials and laser pulses that result from interactions between the ultra fast laser pulses and the materials are collected. Spectral content of the resulting pulses is generated and presented. The elemental composition of the materials is determined using the spectral content.
Abstract:
A signal waveform measuring apparatus 1A is configured from: a signal optical system 11, a reference optical system 16, a time difference setting unit 12 setting a time difference between signal light L1 and reference light L2, a wavelength conversion element 20 including an aggregate of crystals of a dye molecule and generating converted light L5, which has been wavelength-converted to a shorter wavelength than incident light made incident on the crystal aggregate, at an intensity proportional to an r-th power (r>1) of the intensity of the incident light, a photodetector 30 detecting the converted light L5, generated at the element 20 at the intensity that is in accordance with the intensity of the signal light L1, the intensity of the reference light L2, and the time difference between the two, and a signal waveform analyzer 40 performing analysis of the detection result of the converted light L5 and thereby acquiring a time waveform of the signal light L1. A signal waveform measuring apparatus and a measuring method that enable a time waveform of signal light to be measured with good precision by a simple configuration are thereby realized.
Abstract:
Machines and methods measure an unknown characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters. One method receives an output signal from the detector and compares that output signal and a computationally determined response of the detector to a known optical signal incident upon the detector. The response is based on said one or more dynamic parameters. The method determines the unknown characteristic based on the comparison of the output signal and the computationally determined response of the detector. Another method receives an output signal from an optical detector detecting one or more optical signals, accesses a predetermined characteristic curve of detector response, compares the output signal from the detector to the predetermined characteristic curve of detector response, and calculates at least one unknown characteristic of one or more optical signals based on results of the comparing step.