Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
A sample investigation system (ES) in functional combination with an alignment system (AS), and methodology of enabling calibration and very fast, (eg. seconds), sample height, angle-of-incidence and plane-of-incidence adjustments, with application in mapping ellipsometer or the like systems.
Abstract:
A monitoring device by laser shadowscopy, which comprises a light emitter (5) and receiver (6), mounted on an arm (8) oscillating at will around two joints (13, 14), in order to restore the image of the monitored profile more accurately.An important application relates to welding methods and especially in hollow beveled edges.
Abstract:
A method of inspecting a lateral pipe extending from a manhole, said method comprising: (a) inserting an imaging head into said manhole using a positioning system, said imaging head connected to an elongated member and comprising an imaging device adapted to convert an image to an image signal, a lens optically coupled to said imaging device, and at least one lamp suitable for projecting a light beam, said lamp having a beam that is adjustable to enable said beam to move relative said imaging device; (b) imaging a target located within said lateral pipe; (c) holding said imaging device essentially steady while imaging said target and adjusting said beam to adjust the illumination of said target.
Abstract:
A sensor unit is for use in a surface plasmon resonance (SPR) assay apparatus having an assay stage. A total reflection prism is supported on a stage surface of the assay stage, and has a sensing surface positioned on an upper surface thereof. The sensing surface receives illuminating light applied thereto to reflect the illuminating light. The assay apparatus receives the illuminating light reflected by the sensing surface, for measuring reaction of a sample. Two engageable ridges are disposed on first and second lateral faces of the prism which are so positioned that the sensing surface is disposed between, and keep the prism positioned on the stage surface by engagement with a retention mechanism of the assay apparatus. Furthermore, a grip portion is formed at a first end of the prism, and adapted to holding of the prism.
Abstract:
A sample investigation system (ES) in functional combination with an alignment system (AS), and methodology of enabling very fast, (eg. seconds), sample height, angle-of-incidence and plane-of-incidence adjustments, with application in mapping ellipsometer or the like systems.
Abstract:
A monitoring device by laser shadowscopy, which comprises a light emitter (5) and receiver (6), mounted on an arm (8) oscillating at will around two joints (13, 14), in order to restore the image of the monitored profile more accurately.An important application relates to welding methods and especially in hollow beveled edges.
Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
Abstract:
A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.