Abstract:
An automatic observation apparatus for detecting mineral samples comprises a base (1), a supporting arm (2), a sample fixing device (3), a stepper motor (4), a high-definition camera (5) and a control system (6). A refractometer is fixed on the base (1). A vertical through hole is formed at the top end of the supporting arm (2), and a lifting rod (211) penetrates through the vertical through hole and is matched with the vertical through hole in shape. A cavity is formed at the top end of the supporting arm (2), a gear (216) is mounted in the cavity, and the gear (216) is meshed with a rack (215) of the lifting rod (211). The sample fixing device (3) is a right-hexagonal-prism shell with the top end sealed, a spring (312) is arranged in a vertical hole of the sample fixing device, a sample locating head fixing device (314) is arranged at the lower end of the spring (312), a blind hole is formed in the lower end of the sample locating head fixing device (314), and a sample locating head (316) is matched with the blind hole in the lower end of the sample locating head fixing device (314). The apparatus can conveniently and efficiently fix samples, stray light interference is avoided, mineral samples can be rotated to be observed from different angles, and mineral sample detection accuracy is improved.
Abstract:
This invention concerns spectroscopy apparatus comprising a light source arranged to generate a light profile on a sample, a photodetector having at least one photodetector element for detecting characteristic light generated from interaction of the sample with light from the light source, a support for supporting the sample, the support movable relative to the light profile, and a processing unit. The processing unit is arranged to associate a spectral value recorded by the photodetector element at a particular time with a point on the sample predicted to have generated the characteristic light recorded by the photodetector element at the particular time based on relative motion anticipated to have occurred between the support and the light profile.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using two or more tracer measurements of isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. Qualitative source identification is provided. These methods can be practiced individually or in any combination.
Abstract:
Methods and systems for determining wafer inspection coordinates for fixed location(s) on a wafer are provided. One system includes an illumination subsystem configured to direct light to a spot on an edge of a wafer. The spot extends beyond the edge of the wafer. The system also includes a stage that rotates the wafer thereby causing the spot to be scanned over the edge of the wafer. The system also includes a detector configured to detect light from the spot while the spot is being scanned over the edge and to generate output responsive thereto. The system further includes a computer processor configured to determine wafer inspection coordinates of two or more locations on the edge of the wafer based on the output and to determine wafer inspection coordinates of fixed location(s) on the wafer based on the wafer inspection coordinates of the two or more locations on the edge.
Abstract:
A method of setting a laser-light intensity value includes: emitting laser light, the laser light being excitation light, a fluorescent-dyed biological sample being irradiated with the excitation light and emitting light; detecting fluorescence emitted by the biological sample, and outputting a signal corresponding to a brightness value; prestoring relation information, the relation information including the plurality of laser-light intensity values, and information on at least one possible correlation between a phototoxicity degree and the brightness value in relation to each of the laser-light intensity values, the phototoxicity to the biological sample resulting from the laser light; generating a fluorescence image having the brightness value based on the output signal; calculating a brightness value representative of a ROI area based on the generated fluorescence image; and referring to the relation information, and determining a laser-light intensity value satisfying tolerance of the phototoxicity based on the calculated representative brightness value.
Abstract:
Methods and systems for determining wafer inspection coordinates for fixed location(s) on a wafer are provided. One system includes an illumination subsystem configured to direct light to a spot on an edge of a wafer. The spot extends beyond the edge of the wafer. The system also includes a stage that rotates the wafer thereby causing the spot to be scanned over the edge of the wafer. The system also includes a detector configured to detect light from the spot while the spot is being scanned over the edge and to generate output responsive thereto. The system further includes a computer processor configured to determine wafer inspection coordinates of two or more locations on the edge of the wafer based on the output and to determine wafer inspection coordinates of fixed location(s) on the wafer based on the wafer inspection coordinates of the two or more locations on the edge.
Abstract:
The present disclosure relates to a technical field of display substrate inspection. The present disclosure discloses an inspection device and an inspection system for display substrate. The inspection device includes a support member, a turning table and a first drive device. The turning table includes: a carrier pivotally mounted on a pivot shaft, the carrier having an observation aperture through its thickness direction; and positioning clamps which are mounted on the carrier and are used to retain the display substrate in the range of the observation aperture. The first drive device is in transmission connection with the pivot shaft of the carrier in order to drive the turning table to rotate around the pivot shaft. When inspecting the appearance of the display substrate by the above mentioned inspection device, omnidirectional inspection of the display substrate can be achieved by turning the turning table. Moreover, the contact between the inspector and the display substrate can be avoided, the risk of damaging the display substrate during appearance inspection can be decreased, and therefore defects of the display substrate caused by appearance inspection can be reduced.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
Abstract:
The invention concerns the field of biomolecule formulation screening and stability testing. It concerns a method for the evaluation of the colloidal stability of liquid biopolymer solutions. The present invention describes a method for determining the stability of a liquid pharmaceutical composition comprising: a) providing a liquid pharmaceutical composition in a container, b) shaking said container on a shaker, whereby the shaker performs an oloid movement, c) determining the stability of said liquid pharmaceutical composition.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.