Abstract:
An optical arrangement, in particular a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) that encloses an interior space (15); at least one, in particular reflective, optical element (4 to 10, 12, 14.1 to 14.6) that is arranged in the housing (2); at least one vacuum generating unit (3) for generating a vacuum in the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1 to 18.10) that is arranged in the interior space (15) of the housing (2) and that encloses at least the optical surface (17, 17.1, 17.2) of the optical element (4 to 10, 12, 14.1 to 14.5), wherein a contamination reduction unit is associated with the vacuum housing (18.1 to 18.10), which contamination reduction unit reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
Abstract:
A mask having a multilayer coating of a specified period thickness distribution such as those used in lithography devices for producing semiconductor components. One problem of projection optics concerns pupil apodization which leads to imaging defects. As here proposed, the period thickness in the mask plane is selected so that it is greater than the period thickness for maximum reflectivity. As a result, not only does the apodization over the pupil become more symmetric but the intensity variation also becomes smaller overall.
Abstract:
An x-ray system or method for exciting a sample under x-ray analysis, using a curved monochromating optic for directing a monochromatic x-ray beam from an x-ray source towards a first focal area. A second optic is positioned within, and receives, the monochromatic x-ray beam, and directs a focused x-ray beam towards a second focal area on the sample. A detector is positioned near the sample to collect radiation from the sample as a result of the focused x-ray beam. The curved monochromating optic produces a beam spot size at the first focal area larger than a beam spot size produced by the second optic at the second focal area, therefore, a beam spot size on the sample is thereby reduced using the second optic. Doubly-curved monochromating optics, and polycapillary optics, are disclosed as possible implementations of the optics.
Abstract:
A method is disclosed for in-situ monitoring of an EUV mirror to determine a degree of optical degradation. The method may comprise the steps/acts of irradiating at least a portion of the mirror with light having a wavelength outside the EUV spectrum, measuring at least a portion of the light after the light has reflected from the mirror, and using the measurement and a pre-determined relationship between mirror degradation and light reflectivity to estimate a degree of multi-layer mirror degradation. Also disclosed is a method for preparing a near-normal incidence, EUV mirror which may comprise the steps/acts of providing a metallic substrate, diamond turning a surface of the substrate, depositing at least one intermediate material overlying the surface using a physical vapor deposition technique, and depositing a multi-layer mirror coating overlying the intermediate material.
Abstract:
A laminate comprises a stimulable phosphor layer, which is capable of storing radiation image information, and which is capable of emitting light of an intensity proportional to the radiation image information when being exposed to secondary stimulating rays, a response speed converting fluorescent substance layer, which is capable of converting the light emitted by the stimulable phosphor layer into light having a life time longer than a light emission life time of the light emitted by the stimulable phosphor layer, and a photo-conductor layer, which is capable of exhibiting electrical conductivity when being exposed to the light obtained from the conversion performed by the response speed converting fluorescent substance layer. The laminate and an electroluminescent layer, which is capable of emitting the secondary stimulating rays with voltage application, are overlaid one upon the other and combined with each other into an integral body.
Abstract:
An EUV light source apparatus and method for producing EUV light, which includes a plasma generation chamber for generating EUV plasma; an EUV light collector having a reflective portion irradiated by EUV light produced in the EUV plasma; a target sample having reflective portion comprised of the same materials as the EUV light collector reflective portion; a first EUV detector for detecting EUV light produced in the EUV plasma; and a second EUV detector for detecting EUV light reflected from the target sample.
Abstract:
A zone plate multilayer structure includes a substrate carrying a plurality of alternating layers respectively formed of tungsten silicide (WSi2) and silicon (Si). The alternating layers are sequentially deposited precisely controlling a thickness of each layer from a minimum thickness of a first deposited layer adjacent the substrate to a maximum thickness of a last deposited layer. The first minimum thickness layer has a selected thickness of less than or equal to 5 nm with the thickness of the alternating layers monotonically increasing to provide a zone plate multilayer structure having a thickness of greater than 12 μm (microns). The x-rays are diffracted in Laue transmission geometry by the specific arrangement of silicon and tungsten silicide.
Abstract translation:区域板多层结构包括承载分别由硅化钨(WSi 2 N 2)和硅(Si)形成的多个交替层的基板。 交替层顺序沉积,从邻近衬底的第一沉积层的最小厚度到最后沉积层的最大厚度精确地控制每一层的厚度。 第一最小厚度层具有小于或等于5nm的选定厚度,交替层的厚度单调增加,以提供厚度大于12μm(微米)的区域板多层结构。 X射线通过硅和硅化钨的具体布置在Laue透射几何中衍射。
Abstract:
An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site.
Abstract:
An ultra-small angle X-ray scattering measuring apparatus includes a detector for detecting X-rays emitted from a sample, an X-ray collimating mirror arranged between the X-ray real focus and the sample, a monochromator arranged between the X-ray collimating mirror and the sample and an analyzer arranged between the sample and the detector. The X-ray collimating mirror includes a pair of X-ray mirrors that are arranged orthogonally relative to each other. The X-ray mirrors are multilayer film mirrors and their X-ray reflection surfaces are paraboloidal. The interplanar spacing of lattice planes of each of the multilayer films is continuously changed along the paraboloid so as to meet the Bragg's condition. The monochromator and the analyzer are formed by using a channel-cut crystal. The analyzer is driven to rotate for scanning around a 2θ-axial line and diffracted rays reduced to a spectrum by the analyzer are detected by the detector.
Abstract:
A narrow band x-ray filter can include: a substrate; and a sheaf of one or more reflection units stacked upon each other on the substrate. Each reflection unit can include: a first set of at least two discrete spacers on a respective underlying structures, a reflector disposed on the first set of spacers so as to form a void between the respective underlying structure and the reflector; and a first set of at least two discrete shims disposed on the first set of at least two spacers, each shim being at least substantially the same thickness as the reflector. A first device to produce a narrow band x-ray beam may include such a filter or an x-ray telescope. A second device to make an x-ray image of a subject may include the first device.