Abstract:
Titanium aluminum nitrogen (“Ti—Al—N”) is deposited onto a semiconductor substrate area to serve as an antireflective coating. For wiring line fabrication processes, the Ti—Al—N layer serves as a cap layer which prevents unwanted reflection of photolithography light (i.e., photons) during fabrication. For field emission display devices (FEDs), the Ti—Al—N layer prevents light originating at the display screen anode from penetrating transistor junctions that would hinder device operation. For the wiring line embodiment an aluminum conductive layer and a titanium-aluminum underlayer are formed beneath the antireflective cap layer. The Ti—Al underlayer reduces the shrinkage which occurs in the aluminum conductive layer during heat treatment.
Abstract:
In accordance with one embodiment of the present invention, the hollow-cathode apparatus comprises a small-diameter tantalum tube with a plurality of tantalum-foil radiation shields, wherein the plurality of shields in turn comprise one or more spiral windings external to that tube and approximately flush with the open end from which electron emission takes place. The axial length of at least one of the inner windings (closer to the tantalum tube) is equal to or less than approximately half the length of the tantalum tube. An enclosed keeper surrounds the cathode. To start the cathode, a flow of ionizable inert gas, usually argon, is initiated through the cathode and out the open end. An electrical discharge is then started between the keeper and the hollow cathode. When heated to operating temperature, electrons exit from the open end of the hollow cathode.
Abstract:
A method for manufacturing a mesh screen of an electrodeless lighting system, capable of intercepting microwave and passing light generated in a bulb, including a mesh screen forming step for forming a mesh screen to have a mesh structure, a first plating step for plating first metal substance on the surface of the mesh screen, a vacuum heat-treating step for vacuum-heat-treating the mesh screen under the condition that the temperature is risen to a predetermined degree, a second plating step for plating second metal substance on the surface of the mesh screen and a photocatalytic coating step for coating photocatalytic substance on the surface of the mesh screen, can improve plating characteristic of the mesh screen, strengthen the maintenance strength, lengthen the life span of the mesh screen and improve the optical character.
Abstract:
A panel and a drive circuit substrate are disposed within a conductive shielding case. Between the panel and the drive circuit substrate, a conductive holding board or separately provided conductive material is provided, and connected to the conductive shielding case by a connecting element so as to surround the drive circuit substrate to be the source of noise. This forms an electromagnetic shield for the drive circuit. Further, a conductive layer is formed on an upper part of an insulating film of a wiring board which connects the panel and the drive circuit substrate. The conductive layer may be connected to, for example, the conductive shielding case and the holding board to be forced to have a ground potential. This provides an electromagnetic shield to the wiring board as well as preventing emission of noise from a gap between the panel and the conductive shielding case.
Abstract:
A panel (10) and a drive circuit substrate (12) are disposed within a conductive shielding case (20). Between the panel (10) and the drive circuit substrate (12), a conductive holding board (16) or separately provided conductive material is provided, and connected to the conductive shielding case (20) by a connecting means (22) so as to surround the drive circuit substrate (12) to be the source of noise. This forms an electromagnetic shield for the drive circuit (12). Further, a conductive layer is formed on an upper part of an insulating film of a wiring board (25) which connects the panel (10) and the drive circuit substrate (12). The conductive layer may be connected to, for example, the conductive shielding case (20) and the holding board (16) to be forced to have a ground potential. This provides an electromagnetic shield to the wiring board (25) as well as preventing emission of noise from a gap between the panel (10) and the conductive shielding case (20).
Abstract:
The device shields from X-radiation produced by electron bombardment of printed inks on a paper sheet in an apparatus including a press device, an electron bombardment device following the press device and a conveying device conveying the paper sheet from the press device through the electron bombardment device to the conveying device. To prevent smearing and double images on the paper sheet the device includes an upstream shielding duct device extending between the press device and the electron bombardment device through which the paper sheet is conveyed; a downstream shielding duct device extending between the electron bombardment device and the downstream conveying device through which the paper sheet is conveyed; a mechanism for contactless transport of the paper sheet from the press device, through the shielding duct devices and the electron bombardment device and to the conveying device; shielding components for shielding from X-radiation provided in press device; and shielding components for shielding against X-radiation provided in the downstream conveying device. Advantageously the upstream and downstream shielding duct devices extend into the press device and the conveying device respectively and the entrance of the upstream shielding duct device is adjacent and close to a contact surface of a press cylinder of the press device.
Abstract:
Efficient electromagnetic shielding envelopes made of wound metallic glass filaments are disclosed. They are made by winding the filaments around a suitably shaped mandrel and embedding the filaments in a matrix. These shielding envelopes have high shielding ratios at low magnetic fields and are easily manufactured.