Abstract:
A CT scanner comprises an x-ray window mounted on an x-ray tube, a cooling fluid circulation line, and a cooling fluid return line. A cold-plate is operatively mounted on the x-ray tube around the x-ray window. The cold plate includes an elongated shell and corrugated fins for rapidly removing heat from the x-ray window. The circulation line is in fluid communication with an inlet of the cold-plate, a cooling fluid reservoir defined between the x-ray tube and a surrounding housing, and a heat exchanger. The return line is in fluid communication with an outlet of the cold-plate, the cooling fluid reservoir, and the heat exchanger. A pump circulates the cooling fluid through the heat exchanger, the suction and return lines, the cold-plate, and the x-ray tube housing.
Abstract:
An X-ray tube has a vacuum housing that contains a cathode and an anode, the housing having a radiation exit window. The radiation exit window is electrically conductive, and lies at cathode potential, and is electrically insulated against the vacuum housing, which lies at a potential that is positive in relation to the cathode potential.
Abstract:
Direct write electron-beam-to-x-ray converters are described, which may be programmed to focus x-rays into an arbitrary shape to provide spatial and intensity modulation to irradiate a malady such as a tumor. An integrated structure of the electron beam to x-ray converter comprises a collimating grid containing a target fluid. The collimating grid comprises a plurality of individual cells enclosed in a housing assembly. An electron beam aimed at a selected individual cell of the collimating grid may be converted to an x-ray beam within the target fluid.
Abstract:
In one example embodiment, an x-ray transmissive window includes an inner surface and an outer surface. An x-ray beam emitted by the x-ray system defines a beam path area on the inner surface of the window and a beam path area on the outer surface of the window. The inner surface is arranged for contact with cooling fluid of the x-ray system and is configured to prevent bubbles present in the cooling fluid from accumulating on the inner surface in the beam path area of the inner surface. The outer surface is configured to prevent fluid droplets from accumulating on the outer surface in the beam path area of the outer surface.
Abstract:
A liquid-cooled aperture body in an x-ray tube. In one example embodiment, an x-ray tube is configured to be at least partially submerged in a liquid coolant. The x-ray tube includes a cathode at least partially positioned within a cathode housing, an anode at least partially positioned within a can, and an aperture body coupling the cathode housing to the can. The can is formed from a first material and the aperture body is formed from a second material. The aperture body defines an aperture through which electrons may pass between the cathode and the anode. The aperture body further defines at least two exterior surfaces that are each configured to be exposed to the liquid coolant in which the x-ray tube is at least partially submerged.
Abstract:
An apparatus includes an electron collector includes a body having an internal bore formed therethrough along a first direction and a window side having an aperture formed in a first portion thereof along a second direction different from the first direction. The apparatus also includes a cover plate having a bottom surface coupled to a second portion of the first surface of the electron collector, and an x-ray transmission window coupled to the cover plate and aligned with the aperture along the second direction, wherein a recess is formed along the second direction in one of the first portion of the first surface of the electron collector and a portion of the bottom surface of the cover plate, and wherein a gap is formed between the bottom surface of the cover plate and the first surface of the electron collector.
Abstract:
In one example embodiment, an x-ray transmissive window includes an inner surface and an outer surface. An x-ray beam emitted by the x-ray system defines a beam path area on the inner surface of the window and a beam path area on the outer surface of the window. The inner surface is arranged for contact with cooling fluid of the x-ray system and is configured to prevent bubbles present in the cooling fluid from accumulating on the inner surface in the beam path area of the inner surface. The outer surface is configured to prevent fluid droplets from accumulating on the outer surface in the beam path area of the outer surface.
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) includes an electron collector body (110). The electron collector body (110) is thermally coupled to an x-ray tube window (102). The electron collector body (110) may include a coolant circuit (112) with a coolant inlet (114) and a coolant outlet (122). One or more thermal exchange devices may be coupled to the x-ray tube window (102) or to the coolant circuit (112) and reduce temperature of the x-ray tube window (102).
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) includes an electron collector body (110). The electron collector body (110) is thermally coupled to an x-ray tube window (102). The electron collector body (110) may include a coolant circuit (112) with a coolant inlet (114) and a coolant outlet (122). One or more thermal exchange devices may be coupled to the x-ray tube window (102) or to the coolant circuit (112) and reduce temperature of the x-ray tube window (102).
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) includes an electron collector body (110). The electron collector body (110) is thermally coupled to an x-ray tube window (102). The electron collector body (110) includes a coolant circuit (112) with a coolant inlet (114) and a coolant outlet (122). Multiple thermal exchange devices are coupled to the coolant circuit (112) and reduce temperature of a coolant passing through the exchange devices.