Abstract:
Provided are an X-ray tube device and an X-ray CT apparatus, which are capable of improving cooling efficiency of a stator coil together with cooling efficiency of an X-ray window. An X-ray tube device includes an X-ray tube including an envelope that holds, in a vacuum, a cathode generating an electron beam and an anode emitting an X-ray by collision of the electron beam, and an X-ray window through which the X-ray is transmitted; a stator coil configured to generate a driving force for rotating the anode; a tube container configured to accommodate the X-ray tube and the stator coil together with insulating oil; and a cooler configured to cool the insulating oil, in which the X-ray tube device further includes a first inflow port connected to a pipe linking the tube container and the cooler and disposed near the X-ray window, a second inflow port connected to the pipe and disposed near the stator coil, and a controller configured to cause the insulating oil to flow into the tube container through the first inflow port in a case where the X-ray is emitted and to cause the insulating oil to flow into the tube container through the second inflow port in a case where the X-ray is not emitted.
Abstract:
A radiation generating apparatus includes: an envelope 1 having a first window 2 through which a radiation is transmitted; and a radiation tube 10 being held within the envelope 1, and having a second window 15 which is arranged in opposition to the first window 2, and through which the radiation is transmitted; and a radiation shielding member 16 thermally connected to the second window 15, having a radiation transmitting hole 21 arranged in communication with the second window 15, and having a protruding portion protruding from the second window 15 toward the first window 2. A thermally conductive member 17 having a higher thermal conductivity rather than that of the radiation shielding member 16 is connected to the protruding portion of the radiation shielding member 16. The radiation generating apparatus can shield an unnecessary radiation and cool a target with a simple structure and is entirely reduced in weight.
Abstract:
An object of the invention is to provide an X-ray generator having a simple configuration where heat generated in the irradiation window can be prevented from conducting to a desired portion in accordance with the purpose of use, the method of use or the structure of the X-ray tube. In an X-ray generator for releasing X-rays generated by irradiating a target placed in a vacuumed atmosphere within an X-ray tube with an electron beam from an electron source through an irradiation window of the X-ray tube, the irradiation window has thermal anisotropy where the thermal conductivity is different between the direction in which the irradiation window spreads and the direction of the thickness of the irradiation window, and therefore, the thermal conductivity in the direction in which the heat from the irradiation window is desired not to conduct is made relatively smaller.
Abstract:
An x-ray radiator has an x-ray tube with a vacuum housing arranged in a radiator housing in which a coolant circulates. The vacuum housing has a porous coating, at least at parts thereof, on surfaces facing the coolant. The heat transfer between the vacuum housing and the coolant is thereby improved, such that the x-ray radiator can be more highly thermally loaded.
Abstract:
A cooling apparatus (10) for X-ray tube inserts (14) is provided. The apparatus comprises a flow director (20) that is configured to direct at least a portion of a flow of a coolant toward a window (30) of an X-ray tube insert. The flow director may incorporate a flow sleeve (208) of a plurality of nozzles (88).
Abstract:
An x-ray tube (24) includes an anode (42) defining a target. A cathode assembly (40) is in operative relationship with the anode to produce x-rays (56). An evacuated envelope (35) encloses the anode and cathode. The evacuated envelope includes a metal frame portion (39). The material comprising the metal frame portion has a backscatter coefficient. An x-ray transmissive window (41) is joined in a vacuum tight manner to the metal frame portion of the evacuated envelope. The material comprising the x-ray transmissive window has a backscatter coefficient. A backscatter layer (90) is deposited on the x-ray transmissive window and the metal frame portion of the evacuated envelope around the x-ray transmissive window. The backscatter layer has a backscatter coefficient greater than the backscatter coefficient of both of the window and the metal frame.
Abstract:
An x-ray tube for emitting x-rays through an x-ray transmissive window is disclosed herein. The x-ray tube includes a casing, an x-ray tube insert which generates x-rays, an x-ray transmissive window disposed in the x-ray tube insert, and at least one heat pipe thermally coupled to the x-ray transmissive window. The x-ray transmissive window provides an area through which the x-rays pass. The heat pipe transfers thermal energy away from the x-ray transmissive window, providing intense, localized cooling of the x-ray window.
Abstract:
A substrate, which has a high thermal conductivity material layer having a thermal conductivity of at least 10 W/cm.multidot.K and which has a cooling medium flow path on or in the high thermal conductivity material layer, has a high heat-dissipating property.
Abstract:
The present invention comprises an x-ray transmission target tube that includes an envelope; x-ray permeable window means disposed at the envelope and forming a part thereof; means for directing a charged particle beam to the window means to generate x-rays thereat; structural means for providing a space at the window means, which structural means comprises an x-ray permeable window element that is disposed opposite the window means and further comprises wall means, which structural means, together with the window means, forms the space; and means for transferring a heat-transfer fluid through the space so as to be in heat transfer relationship with the window means.
Abstract:
A radiation generating apparatus of the present invention includes an envelope 1 including a first window 2 allowing radiation to pass; a radiation tube 10 that is accommodated in the envelope 1, and includes a second window 15 allowing radiation to pass, at a position opposite to the first window 2; a radiation passing hole 21 that is thermally connected to the second window 15 and communicates with the second window 15; and a radiation shielding member 16 protruding from the second window 15 toward the first window 2. In this apparatus, a thermally conductive member 17 having a higher thermal conductivity than the radiation shielding member 16 is connected to an outer periphery of the protruding portion of the radiation shielding member 16. The simple configuration can shield unnecessary radiation, and cool the target, while facilitating reduction in weight.