Abstract:
A system, components thereof, and methods are described for time-of-flight mass spectrometry. A microwave or high-frequency RF energy source is used to ionize a reagent vapor to form reagent ions. The reagent ions enter a chamber and interact with a fluid sample to form product ions. The reagent ions and product ions are directed to a time-of-flight mass spectrometer module for detection and determination of a mass value for the ions. The time-of-flight mass spectrometer module can include an optical system and an ion beam adjuster for focusing, interrupting, or altering a flow of reagent and product ions according to a specified pattern. The time-of-flight mass spectrometer module can include signal processing techniques to collect and analyze an acquired signal, for example, using statistical signal processing, such as maximum likelihood signal processing.
Abstract:
A system and methods are described for generating reagent ions and product ions for use in a quadruple mass spectrometry system. A microwave or high-frequency RF energy source ionizes particles of a reagent vapor to form reagent ions. The reagent ions enter a chamber, such as a drift chamber, to interact with a fluid sample. An electric field directs the reagent ions and facilitates an interaction with the fluid sample to form product ions. The reagent ions and product ions then exit the chamber under the influence of an electric field for detection by a quadruple mass spectrometer module. The system includes various control modules for setting values of system parameters and analysis modules for detection of mass values for ion species during spectrometry and faults within the system.
Abstract:
An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
Abstract:
In mass spectrometric analysis equipment, highly charged analyte fragment ions are obtained by electron transfer dissociation of highly charged analyte ions by radical anions and the dissociation products are then deprotonated with non-radical anions. Both the radical anions for electron transfer dissociation and the non-radical anions for deprotonation are produced in a single ion source from a single substance, or a single mixture of substances by adjusting the electrical operating parameters of the ion source.
Abstract:
Combined desorption and ionization sources are provided to generate molecular ions form a sample disposed on a substrate surface. A heated gas-jet probe or heated solvent stream probe desorbs sample molecules into the gas phase. The desorbed sample molecules are ionized by reaction between the sample molecule and charged solvent droplets. The charged solvent droplets may be produced by electrospray probe or by a corona discharge. The combined desorption and ionization sources coupled by a vacuum interface to a mass spectrometer, where the sample molecule ions can be analyzed.
Abstract:
A system for the stand-off detection of trace amounts of analyte materials such as explosives, chemical warfare agents, toxic industrial chemicals, and the like includes an ion source that is operably connected to an ion collection means and to a sensor. The ion source employs a first gas that is passed through an electrical discharge to produce metastable gas molecules as well as charged particles of various kinds. Ions and other charged particles are removed from the first gas which is then reacted with a second gas having a lower ionization potential to obtain reactant ions of relatively uniform energy. The reactant ions are focused and accelerated into a beam that is directed upon a surface, such as luggage or clothing that is being interrogated, to produce analyte ions which are collected and passed into the sensor that is preferably a differential mobility spectrometer.
Abstract:
A mass spectrometer having an ion source section capable of creating positive ions and negative ions at high efficiency. The ion source is comprised of an ion source section for creating ions of a sample gas, a mass spectrometric section for conducting mass separation of created ions, linear RF generating multipole electrodes, magnetic fields generation means, a sample gas introduction system, a reaction gas introduction system and an electron source in which the linear RF generating multipole electrodes generate linear RF multipole electric fields. A static magnetic fields is applied in parallel on the center axis where the linear RF multipole electric fields are zero. A sample gas and a reagent gas are introduced into the ion source section. Electrons are injected for creating reaction of the positive ions or negative ions.
Abstract:
A new ionization source named Surface Activated Chemical Ionization (SACI) has been discovered and used to improve the sensitivity of the mass spectrometer. According to this invention the ionization chamber of a mass spectrometer is heated and contains a physical new surface to improve the ionization process. The analyte neutral molecules that are present in gas phase are ionized on this surface. The surface can be made of various materials and may also chemically modified so to bind different molecules. This new ionization source is able to generate ions with high molecular weight and low charge, an essential new key feature of the invention so to improve sensitivity and reduce noise. The new device can be especially used for the analysis of proteins, peptides and other macromolecules. The new invention overcomes some of the well known and critical limitations of the Electrospray (ESI) and Matrix Assisted Laser Desorption Ionization (MALDI) mass spectrometric techniques.
Abstract:
A method for differentiating complex biological samples, each sample having one or more metabolite species. The method comprises producing a mass spectrum by subjecting the sample to a mass spectrometry analysis, the mass spectrum containing individual spectral peaks representative of the one or more metabolite species contained within the sample; subjecting the individual spectral peaks of the mass spectrum to a statistical pattern recognition analysis; identifying the one or more metabolite species contained within the sample by analyzing the individual spectral peaks of the mass spectrum; and assigning the sample into a defined sample class.
Abstract:
An improved ion source for collecting and focusing dispersed gas-phase ions from a reagent source at sub-atmospheric or intermediate pressure, having a remote source of reagent ions separated from a low-field sample ionization region by a barrier, comprised of alternating laminates of metal and insulator, populated with a plurality of openings, wherein DC potentials are applied to each metal laminate necessary for transferring reagent ions from the remote source into the low-field sample ionization region where the reagent ions react with neutral and/or ionic sample forming ionic species. The resulting ionic species are then introduced into the vacuum system of a mass spectrometer or ion mobility spectrometer. Embodiments of this invention are methods and devices for improving sensitivity of mass spectrometry when gas and liquid chromatographic separation techniques are coupled to sub-atmospheric and intermediate pressure photo-ionization, chemical ionization, and thermal-pneumatic ionization sources.