Abstract:
A flexible conductive coating including: a first plurality of conductive traces extending in a first direction and a second plurality of conductive traces, each of the conductive traces including metal nanoparticles and ones of the second plurality of conductive traces being electrically coupled to ones of the first plurality of conductive traces, wherein each of the first plurality of conductive traces includes two substantially parallel long sides and two rounded short sides connecting the two long sides, and wherein more of the metal nanoparticles are at an outer edge of each of the conductive traces than are at an inner region bounded by the sides of each of the conductive traces.
Abstract:
A flexible printed circuit board having at least a set of strip line transmission path by being provided with a signal line, and a pair of ground layers and, includes a pleated part PL having a plurality of curved portions which are curved so as to be opened or closed, in which in the ground layers, mesh ground layers in which conductive portions are provided in a mesh shape, and solid ground layers in which the conductive portions are provided in a planar state, are provided, in which the mesh ground layers are arranged on an outer peripheral side of the curved portions PL2, and the solid ground layers are arranged on an inner peripheral side of the curved portions.
Abstract:
An input device having a plurality of low-visibility sensor electrodes and method for fabricating the same are provided. In one example, an input device includes a display device having an array of pixels and a plurality of sensor electrodes disposed on a viewing side of the display device. At least a first sensor electrode of the plurality of sensor electrodes includes a plurality of spaced apart conductive traces forming a conductive mesh, wherein mesh having a first periodicity defined by intersections of the conductive traces forming the mesh. A terminal portion of one of the conductive traces terminates at an edge of the first sensor electrode and has an attached light occluding element. The attached light occluding element is disposed over a subpixel having the same color as a subpixel which an intersecting trace would lay over when the intersection occurs in an interior region of the sensor electrode.
Abstract:
The present invention relates to a method for burying a conductive mesh in a transparent electrode, and more particularly, to a method which prevents a conductive mesh from protruding from a transparent electrode by burying the conductive mesh in the transparent electrode.
Abstract:
An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
Abstract:
Embodiments of the present disclosure are directed towards electro-magnetic interference (EMI) shielding techniques and configurations. In one embodiment, an apparatus includes a first substrate, a die having interconnect structures coupled with the first substrate to route input/output (I/O) signals between the die and the first substrate and a second substrate coupled with the first substrate, wherein the die is disposed between the first substrate and the second substrate and at least one of the first substrate and the second substrate include traces configured to provide electro-magnetic interference (EMI) shielding for the die. Other embodiments may be described and/or claimed.
Abstract:
A foil comprises a substrate carrying an electrically conductive structure. The electrically conductive structure is embedded in a barrier layer structure having a first inorganic layer, a second inorganic layer and an organic layer between said inorganic layers, and the organic layer is partitioned by the electrically conductive structure into organic layer portions. The electrically conductive structure comprises an enclosing mesh and a plurality of mutually insulated electrically conductive elements. The enclosing mesh encloses mutually separate zones wherein respective ones of the mutually insulated electrically conductive elements are arranged.
Abstract:
In some embodiments, a multi-layered package includes a plurality of mesh planes. The multi-layered package includes at least one through-mesh-plane via positioned to traverse the plurality of mesh planes, wherein the at least one through-mesh-plane via is to intersect the plurality of mesh planes. The multi-layered package includes at least one signal via positioned to traverse the plurality of mesh planes, wherein the at least one signal via is positioned within an opening of the plurality of mesh planes and is positioned adjacent to the at least one through through-mesh-plane via.
Abstract:
A ground line structure adapted to a flexible circuit board is provided. The ground line structure includes a plurality of ground line structure units located on the flexible circuit board to form a meshed pattern. The ground line structure units include a plurality of ground line edge segments, a ground line middle segment and a plurality of ground line connecting segments. The ground line edge segments define an edge shape of each ground line structure unit. The edge shape of each ground line structure unit is a hexagon. The ground line connecting segments are configured to connect the ground line middle segment and the ground line edge segments. The ground line edge segments, the ground line middle segment and the ground line connecting segments form a plurality of pentagonal electrode structures within the hexagonal ground line structure unit. A flexible circuit board including the ground line structure is also provided.
Abstract:
A computer system receives an initial multilayered ceramic package design. The computer system maintains a first selection of mesh line segments of the mesh line segments at a first width and adjusts a second selection of mesh line segments of the plurality of mesh line segments to a second width. The computer system controls fabrication of the multilayered ceramic package based on the modified multilayered ceramic package design.