Abstract:
A process for regenerating a deactivated vanadium-titanium-phosphorous catalyst which has been used in the production of unsaturated carboxylic acid is disclosed. The process comprises contacting the deactivated vanadium-titanium-phosphorous catalyst with a regeneration stream comprising steam as a regeneration agent at a temperature which is the same or similar to that used in the production of the unsaturated carboxylic acid.
Abstract:
The invention concerns a method for rejuvenating an at least partially used catalyst originating from a hydroprocessing and/or hydrocracking process, the at least partially used catalyst being derived from a fresh catalyst comprising at least one group VIII metal (in particular, Co), at least one group VIB metal (in particular, Mo), an oxide support, and optionally phosphorus, the method comprising the steps: a) regenerating the at least partially used catalyst in a gas stream containing oxygen at a temperature between 300° C. and 550° C. so as to obtain a regenerated catalyst, b) then placing the regenerated catalyst in contact with phosphoric acid and an organic acid, each having acidity constant pKa greater than 1.5, c) performing a drying step at a temperature less than 200° C. without subsequently calcining it, so as to obtain a rejuvenated catalyst.
Abstract:
A method for separation of at least one catalyst or adsorbent from a homogeneous mixture of catalysts or adsorbents, used in a method for treatment of gas or hydrocarbon feedstock, in which the grains of catalysts or adsorbents are separated according to a sorting threshold corresponding to a content of the constituent element that is sought and defined by the user.
Abstract:
The invention has as its object a catalyst that comprises a substrate based on alumina or silica or silica-alumina, at least one element from group VIII, at least one element from group VIB, and at least one additive that is selected from among 2-acetylbutyrolactone and/or its hydrolysis products, 2-(2-hydroxyethyl)-3-oxobutanoic acid, and 3-hydroxy-2-(2-hydroxyethyl)-2-butenoic acid. The invention also relates to the method for preparation of said catalyst and its use in a method for hydrotreatment and/or hydrocracking.
Abstract:
A process for regenerating a deactivated vanadium-titanium-phosphorous catalyst which has been used in the production of unsaturated carboxylic acid is disclosed. The process comprises contacting the deactivated vanadium-titanium-phosphorous catalyst with a regeneration stream comprising steam as a regeneration agent at a temperature which is the same or similar to that used in the production of the unsaturated carboxylic acid.
Abstract:
The present invention relates to a synthesis method of N-substituted maleimides using a non-homogeneous solid acid catalyst, and particularly, a synthesis method of N-substituted maleimides with high synthesis yield by using a zirconium(IV) hydrogen phosphate as a catalyst, by which, the loss of the catalyst is minimized, the separation and recovering processes of the catalyst are simplified, in case when the activity of the separated and recovered catalyst is decreased, the complete regeneration of the catalyst is possible via washing or firing, and solvents that could be used during a washing process of the catalyst are not limited.
Abstract:
The invention concerns a synthesis process of a compound of the following formula (I) or one of the salts thereof, wherein R represents a COOH, CH2OH or CHO group, comprising the step according to which the but-3-ene-1,2-diol (BDO) is subjected to an oxidation in the presence of a catalyst, said catalyst comprising an active phase based on at least one noble metal selected from palladium, gold, silver, platinum, rhodium, osmium, ruthenium and iridium, and a support containing alkaline sites. The invention also concerns the application of this reaction to the preparation of bioavailable compounds of methionine used, in particular, in animal nutrition.
Abstract:
The present invention provides a process for regenerating a deactivated heteropolymolybdophosphoric acid catalyst, comprising the steps of grinding the deactivated catalyst into particles having a particle size of 40 mesh or less, mixing the particles with a mixture comprising aqua ammonia, an aqueous solution containing ammonium ions and organic auxiliaries, kneading the same in a kneader to obtain a paste, drying the paste, molding the paste into cylindrical particles with a through hole in its longitudinal axis, and heating the paste in atmosphere at 350˜450° C. for 1˜10 hours to produce the generated catalyst.
Abstract:
The method includes a pretreatment step during an operation of a boiler in which in a predetermined period of time before shutdown of the boiler, a part of combustion gas that has bypassed an economizer provided in a flue gas duct for flue gas from the boiler is supplied to an upstream of a NOx removal device having a NOx removal catalyst and mixed with the combustion flue gas from the economizer to generate mixed gas having a predetermined temperature equal to or higher than 360° C. (360° C. to 450° C.), the mixed gas is introduced into the NOx removal catalyst, thereby decomposing VOSO4 adhering to and accumulating on the NOx removal catalyst into V2O5.
Abstract translation:该方法包括在锅炉操作期间的预处理步骤,其中在锅炉关闭之前的预定时间段内,供应已经绕过设置在烟气管道中的节能器的燃烧气体的一部分用于来自锅炉的烟道气的一部分 到具有NOx去除催化剂的NOx去除装置的上游,并与来自节能器的燃烧烟道气混合以产生具有等于或高于360℃的预定温度的混合气体(360℃至450℃) ),将混合气体引入除去NOx的催化剂中,从而将附着在NOx除去催化剂上的VOSO 4分解成V 2 O 5。