Abstract:
A vacuum system bakeout process is performed by cycling the system between two pressures, pumping the system down to a lower pressure, and holding the system at that lower pressure for a period of time. A gas, such as argon gas, is introduced into the system. This gas introduction is done while cycling between the two pressures. The pump is used to lower the pressure during cycling, and the gas flow is used to raise the pressure. A rough pump performs the cycling between pressures, and then a high vacuum pump evacuates the system to the lower pressure.
Abstract:
The objects of the present invention are to remove the dust in a closed container, to keep the pressure in the closed container within a predetermined range, and to shorten the maintenance time of a vacuum pump system.The present invention provides a centrifugal dust collector 2 on main pipes which connects a furnace body 1, a mechanical press 9 and a dry pump 10, and a metal mesh dust collector 15 on a bifurcated pipe in a single-crystal semiconductor pulling apparatus. When the vacuum pump process begins, the metal mesh dust collector 15 collects amorphous silicon generated in the furnace 1. As the pressure in the furnace is reduced, the centrifugal dust collector 2 collects the dust particles instead. Since the gas flow rate increases as the vacuum state become higher, the critical diameter of collectable particles decreases, thereby improving the dust collection efficiency. The collected amorphous silicon accumulates on the bottom of the centrifugal dust collector and can be easily removed so as to facilitate maintenance. Moreover, there will be very little pressure variance in the furnace since no dust filter is blocked.
Abstract:
A safe and efficient hydrothermal reaction apparatus is described herein. Decomposition or synthesis of object material is performed by the continuous passing of the material through a flow passage of multi-staged reactor units under turbulent flow conditions. The flow passage is formed by a curved or spiral piping. In each reactor unit, a hot plate block is included as a heating unit. The hot plate block and the curved piping are placed in an appropriate thermal contact relationship. A portion of the curved piping is freely supported, so as to accommodate stress caused in the piping under high-temperature/high-pressure conditions. A tank is provided for regulating or controlling the pressure fluctuation within the flow passage which may be caused by solids or powder present or occurring in the flow passage during high-pressure treatment. A portion of object material which has not been decomposed during the high-pressure treatment is again introduced or returned to the reactor for complete decomposition thereof after the addition of more solvent.
Abstract:
A method and apparatus is disclosed for controlling the pressure of reaction chamber in wafer processing equipment. The disclosed apparatus and method uses a ballast port for inserting gas into the evacuation system, thereby controlling the pressure in the reaction chamber. The disclosed apparatus and method further uses estimation curves to estimate the desired position of a controlled gate valve which is located between the reaction chamber and turbo pump. The disclosed apparatus and method further introduces process gases at higher rate than set point levels to reduce the transition time or stabilization time required when raising the pressure in the reaction chamber.
Abstract:
A method of discharging particulate material from a first container to a lower positioned storage area being under a lower pressure than the first container. Particulate material is discharged via an upper tube section of a discharge tube communicating with the first container and permanently containing a column of the particulate material. The discharged material is directed into a pressurized stabilizer. The discharged material is directed via a lower tube section to a material feeder for forming columns of the particulate material in the upper and lower tube sections thereby reducing the pressure of the material to a predetermined normal pressure level at the input of the feeder. The material is fed to the storage area. The quantity of discharged material is controlled by the feeder. Gas flowing from the first container is extracted through the particulate material column to an environment via a throttle at an upper portion of the pressure stabilizer, thus stabilizing the discharge by making it independent of pressure variations in the particulate material column upstream of the pressure stabilizer. The feeder is stopped when a pressure increases in the particle column in the upper tube section resulting in a pressure increase in the pressure stabilizer until the pressure of the pressure stabilizer has returned to the normal level due to the extraction of gas.
Abstract:
A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.
Abstract:
A high speed wafer processing apparatus employs two wafer transport robots to move wafers from two load locks past a processing station with gentle vacuum cycling and without pumpdown delays. Both robots alternately transport each wafer from the cassette at a single one of the load locks along a path from the cassette to a transfer position through the process station and back to the cassette, while pumpdown or venting of the other (second) load lock is carried out. They then transport the wafers from the second load lock through the process station. A wafer is "parked" at a transfer or orienting station, rather than handed over from robot to robot, so that the robots are not both tied up with a single wafer, and two or more wafers can move simultaneously along the path. Even for a fast ten second process time, work flow proceeds without interruption, periodic delay or dead time, and three to five minutes are available for venting, loading a new cassette and pumpdown. The robots enjoy partial path overlap, and operate in bucket brigade fashion without stop.
Abstract:
Disintegrated material is supplied to a pressure chamber by a rotatable and axially translatable screw piston. The piston is rotated while in a first axial position to transport and compact the material in a receiving chamber against a closed output valve in front of the piston. The output valve is opened and the compacted material is moved into the pressure chamber by axial non-rotative motion of the piston. The output valve then is closed, and the piston is axially returned to its first axial position while rotating in the same direction as before. The operation cycle is repeated as above. An apparatus for carrying out a process comprises an axially movable guide piston rotationally carrying and guiding the screw piston for rotation and axial movement by action of a hydraulic cylinder and a mechanism for rotationally positioning the screw piston.
Abstract:
The continuous removal of solid products from a high-pressure system is achieved by operating a high-pressure pump in reverse to gradually reduce pressure at the exit line to atmospheric pressure. This process allows solid products to exit the system while at the same time maintaining high pressure in the reactor.
Abstract:
The invention relates to a procedure and an apparatus for feeding solid material into a pressurized space. According to the invention, the apparatus comprises a feed chamber (12) communicating with the pressurized space (1) via a gate (13), a piston cylinder (8) adjoining the feed chamber (12) and provided with an aperture (28) in its wall for the intake of solid material, and a piston (9) which consists of an inner and an outer piston (11,10), moves within the piston cylinder (8) and closes the feed chamber (12) tightly when in its front position. The inner piston (11) moves inside the outer piston (10) and in the feed chamber (12) to insert the solid material into the pressurized space (1). In the procedure of the invention, the solid material is supplied into the feed chamber (12) through the piston cylinder (8) and the aperture (28) in its wall while the piston (9) is in its rear position, the piston (9) is thrust into its front position so that the feed chamber (12) is tightly closed, a pressure corresponding to that in the pressurized space (1) is formed in the feed chamber (12), the gate (13) between the pressurized space (1) and the feed chamber (12) is opened and the inner piston (11) is thrust into its front position.