Abstract:
The invention provides processes for coating the surface of polymeric materials such as a sheet, film, foam, fiber, etc., with a curable liquid resin or solution of curable resin, then in one embodiment, stably attaching a superabsorbent polymeric powder to such resin, and then curing the resin to form a coated superabsorbent product. Other process embodiments and resulting products are included in the invention. The coated product has reduced particle agglomeration and particle loss due to the curing step. The product can be interposed between sheets to form disposable absorbent products such as diapers, bandages, etc. or used on one side to form cleaning products.
Abstract:
The present invention provides a manufacturing device of electrochemical cell components in a battery comprising a preliminary dip tank, baking box, main dip tank, and dipping device, drying tower and consolidating device. The present invention also provides a process for manufacturing electrochemical cell components in a battery comprising applying electrode materials over metal current collector webs or carbon (or glass) fiber fabric webs with dipping, baking and consolidating steps to make various kinds of electrochemical cell components in a battery (e.g. a cathode, anode, and separator) for use in subsequent processes of making a battery.
Abstract:
A target of fullerene is placed with a substrate in a vacuum chamber. A charged beam, i.e., an electron beam or an ion beam, is directed at the target with a power adequate to emit fullerene molecules from the target and not high enough to form significant amounts of fullerene having a higher molecular structure than the target fullerenes. Fullerene is deposited on the substrate. Regardless of the approach used to deposit the fullerenes, the substrate can be heated during deposition to a temperature above the fullerene-to-fullerene disorption temperature to form a coating consisting of an approximate monolayer of fullerene.
Abstract:
A thin film layer can be formed on a glass substrate by preheating the substrate, depositing an amorphous silicon precursor layer on the substrate at a first temperature, and annealing the substrate in a thermal processing chamber at a second temperature sufficiently higher than the first temperature to substantially reduce the hydrogen concentration in the precursor layer. The preheating and annealing steps can occur in the same thermal processing chamber. Then the precursor layer is converted to a polycrystaline silicon layer by laser annealing.
Abstract:
There is provided a method of applying a surface treatment, such as coating, denaturation, modification and etching, to a surface of a substrate. The method comprises the steps of bringing a surface treatment gas into contact with a surface of a substrate, and irradiating the surface of the substrate with a fast particle beam to enhance an activity of the surface and/or the surface treatment gas thereby facilitating the reaction between the surface and the gas. The fast particle beam may be selected from a group consisting of an electron beam, a charged particle beam, an atomic beam and molecular beam. For example, in a coating operation, chemically deposition of predetermined component elements of the gas onto the surface is effected and a predetermined portion in the surface of the substrate is irradiated with a particle beam to form a coating layer on the predetermined portion.
Abstract:
A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu and then directing a high energy beam onto the substrate to cause an intermixing of the deposited material with the native oxide of the substrate metal or metal alloy. The native oxide layer is changed from electrically insulating to electrically conductive. The step of depositing can be carried out, for example, by ion beam assisted deposition, electron beam deposition, chemical vapor deposition, physical vapor deposition, plasma assisted, low pressure plasma and plasma spray deposition and the like. The high energy beam can be an ion beam from a high energy ion source or it can be a laser beam. The deposition may be performed on either treated or untreated substrate. The substrate with native oxide layer made electrically conductive is useable in the manufacture of electrodes for devices such as capacitors and batteries.
Abstract:
Ethylene copolymer elastomer compositions, acrylate rubber compositions, nitrile rubber compositions, fluoroelastomer compositions, and chlorinated elastomer compositions are provided which are curable by exposure to UV radiation. The compositions are particularly suited for production of elastomeric seals using hot melt equipment and a gasketing in place technique.
Abstract:
In one aspect, the invention encompasses a method of utilizing a vaporization surface as an electrode to form a plasma within a vapor forming device. In another aspect, the invention encompasses a method of chemical vapor deposition. A vaporization surface is provided and heated. At least one material is flowed past the heated surface to vaporize the material. A deposit forms on the vaporization surface during the vaporization. The vaporization surface is then utilized as an electrode to form a plasma, and at least a portion of the deposit is removed with the plasma. In another aspect, the invention encompasses a vapor forming device. Such device includes a non-vapor-state-material input region, a vaporization surface, and a flow path between the non-vapor-state-material input region and the vaporization surface. The device further includes a vapor-state-material output region, and a vapor flow path from the vaporization surface to the vapor-state-material output region. Additionally, the device includes a first plasma electrode spaced from the vaporization surface, and plasma generation circuitry configured to utilize the vaporization surface as a second plasma electrode such that a plasma can be formed between the first and second plasma electrodes.
Abstract:
Low dielectric constant films with improved elastic modulus. The method of making such coatings involves providing a porous network coating produced from a resin containing at least 2 SinullH groups and plasma curing the coating to convert the coating into porous silica. Plasma curing of the network coating yields a coating with improved modulus, but with a higher dielectric constant. The coating is plasma cured for between about 15 and about 120 seconds at a temperature less than about 350null C. The plasma cured coating can optionally be annealed. Rapid thermal processing (RTP) of the plasma cured coating reduces the dielectric constant of the coating while maintaining an improved elastic modulus as compared to the plasma cured porous network coating. The annealing temperature is typically less than about 475null C., and the annealing time is typically no more than about 180 seconds. The annealed, plasma cured coating has a dielectric constant in the range of from about 1.1 to about 2.4 and an improved elastic modulus.
Abstract:
The invention provides a system and a method for densifying a surface of a porous film. By reducing the porosity of a film, the method yields a densified film that is more impenetrable to subsequent liquid processes. The method comprises the steps of providing a film having an exposed surface. The film can be supported by a semiconductor substrate. When the film is moved to a processing position, a focused source of radiation is created by a beam source. The exposed surface of the film is then irradiated by the beam source at the processing position until a predetermined dielectric constant is achieved. The film or beam source may be rotated, inclined, and/or moved between a variety of positions to ensure that the exposed surface of the film is irradiated evenly.