Abstract:
Provided is a method of identifying authenticity of oil by reacting oil marked by a Oil Marker Composition with a developer to develop a color and then measuring absorbance. According to the present invention, an oil maker capable of quantitatively and qualitatively measuring authenticity of oil due to a rapid reaction rate, excellent reproducibility, and distinct color development that may be observed by the naked eyes, and a method of identifying oil using the same.
Abstract:
A process of making a fuel product from spent grain from a beer brewing process. In the brewing process, the grain is pulverized to a particle size whose mean particle size is generally in the range of 0.25 mm to 0.6 mm with less than 1% greater than 2 mm. After the brewing sugars are extracted from the grain, the spent grain is pressed against a filter to reduce moisture below sixty-five percent (65%), and then the grain is dried to further reduce its moisture to less than ten percent (10%). The dried spent grain, after the aforementioned processing, is fed into a combustion chamber for a steam boiler that is used for beer brewing, and the spent grain is advanced downward through the combustion chamber with agitation to aid combustion.
Abstract:
A compound having formula (Ph3C)mAr(R1)j(OR2)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms, R1 and R2 independently are C1-C18 alkyl or C4-C18 heteroalkyl, m is one or two, j is an integer from one to four and n is an integer from one to three.
Abstract:
A compound having formula (Ph3C)mAr(GR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO2; R is: (a) C1-C18 alkyl substituted by at least one of OH, SH, C1-C18 alkoxy and cyano; or (b) C4-C18 heteroalkyl; m is one or two; and n is an integer from one to four.
Abstract:
The invention relates to a method for producing crude oil from biomass by direct liquefaction under atmospheric pressure, involving the following steps: introducing dried biomass into a reactor containing heavy oil to form a sump oil phase consisting of biomass and heavy oil; maintaining the temperature of the sump oil phase at a predetermined reaction temperature; condensing and collecting the volatile reaction products; and isolating and collecting the crude oil. Said method is characterized in that the heavy oil phase has at least 5 wt. % organically bound oxygen.
Abstract:
A compound having formula (I), wherein G1 represents a C4-C22 alkyl or alkenyl group, a C8-C20 aralkyl group or formula (II) wherein G3 is a difunctional C2-C18 alkyl or alkenyl group, a difunctional C6-C20 aryl group or G3 is absent; provided that G1 is not 2-butyl, n-hexyl, n-octyl, n-dodecyl, n-hexadecyl or 2-phenylethyl.
Abstract:
Disclosed is a process for biomass conversion which includes co-processing the biomass with thermoplastic and non-thermoplastic polymer based materials in a catalytic pyrolysis reactor to convert such to liquid hydrocarbons; wherein hydrogen atoms originating with the polymer materials can remove oxygen from oxygenated hydrocarbons produced in the conversion of the biomass in the reactor.
Abstract:
The present invention relates to systems and methods for producing energy. Specifically, the present invention relates to systems and methods for producing energy, such as energy in the form of electricity, and fuels, such as, for example, biodiesel and/or cellulosic ethanol in a small scale energy center. Moreover, the systems and methods of the present invention provide for recovery of materials, such as in soil production and/or recycling.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
A fuel processing system for converting a logistical fuel and air into a liquid product comprising methanol. One such system comprises a fuel injection system configured to combine a logistical fuel and ambient air to produce a logistical fuel and air mixture, a synthesis gas production system configured to convert the logistical fuel and air mixture to synthesis gas, and a methanol synthesis system configured to convert the synthesis gas to a crude methanol liquid. Related methods are additionally disclosed.