Abstract:
A UV light source in which Xenon (Xe) gas is mixed with a substance which, in the temperature range in which 10-valent Xe ions (Xe10null) occur, emits a number of free electrons from a molecule or an atom that at least half the number of electrons which are released from a Xe atom, and which at room temperature is molecular or atomic (for example Ar, Kr, Ne, N2 and NH3). A high voltage is applied in a pulse-like manner to the electrode on the ground side and the electrode on the high voltage side to produce a plasma with a high temperature and from which extreme UV light with a wavelength of 13.5 nm is formed and emitted. The invention can also be used an extreme UV light source of the capillary, plasma focus, and Z pinch types for example.
Abstract:
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Abstract:
A digitally-controlled pyroelectric signal sampling circuit is proposed, which is designed to process the alternating current (AC) signal from a pyroelectric device, such as a pyroelectric infrared sensor, such that the AC signal is converted into direct current (DC) signal. The proposed digitally-controlled pyroelectric signal sampling circuit is characterized by the use of a microprocessor in conjunction with a crystal oscillator whose operating characteristics would be substantially unaffected by temperature changes in the ambient environment. This feature allows the generated trigger signal and sampling signals to be substantially fixed in frequencies and timings, without drifting due to temperature changes in the ambient environment, and therefore allows the digitally-controlled pyroelectric signal sampling circuit of the invention to provide a more accurate DC output than prior art. Moreover, the utilization of a microprocessor in place of analog-type delay circuitry can help simplify the hardware architecture and thus save manufacturing cost.
Abstract:
An electron beam exposure apparatus for exposing a wafer with an electron beam includes a section for generally controlling a wafer exposing system, a first buffer memory for temporarily storing exposure data, a second buffer memory for temporarily storing the exposure data, a first exposing section for irradiating the wafer with an electron beam based on exposure data output from the first buffer memory, and a first comparing section for comparing exposure data output from the first buffer memory with exposure data output from the second buffer memory and notifying the comparison results to the general control section. Further, an exposure apparatus and a pattern error detection method for accurately detecting an error of an exposure pattern formed to a wafer is disclosed.
Abstract:
There is disclosed a dose monitor method comprising illuminating a mask with illumination light, which is disposed in a projection exposure apparatus and in which a dose monitor pattern is formed, passing only a 0th-order diffracted light through a pupil surface of the projection exposure apparatus in diffracted lights of the dose monitor pattern, and transferring a 0th-order diffracted light image of the dose monitor pattern onto a substrate to measure dose, wherein during the illuminating, a center of gravity of the 0th-order diffracted light image passed through the dose monitor pattern on the pupil surface of the projection exposure apparatus is shifted from an optical axis of the projection exposure apparatus.
Abstract:
An environmental monitoring apparatus comprises: an infrared transmitting substrate 12 disposed in a prescribed ambient atmosphere 10; an infrared radiation source 20 for irradiating an infrared radiation to the infrared transmitting substrate 12; a contaminant analyzing means 30 for computing a concentration of a contaminant in the ambient atmosphere 10, based on the infrared radiation exited from the infrared transmitting substrate 12 after the infrared radiation has undergone multiple reflections inside the infrared transmitting substrate 12; and a contaminant removing means 50 for removing the contaminant in the ambient atmosphere 10 complied with the concentration of the contaminant in the ambient atmosphere 10, which have been computed by the contaminant analyzing means 30. Thus, the contaminant in the ambient atmosphere can be monitored with high sensitivity and real time, and can be immediately removed when the concentration in the ambient atmosphere exceed a prescribed value.
Abstract:
The invention relates to a method for producing radio frequency waves, whereby a pulse laser for producing light pulses having a predetermined spectrum of frequency modes and a predetermined recurrence frequency is operated. The light pulses of the pulse laser are detected by means of a detector device, and corresponding electrical output signals forming the radio frequency signals are produced. Said pulse laser is actuated in a stabilized manner by means of an optical reference signal in such a way that the recurrence frequency of the light pulse is fixed. The invention also relates to a radio frequency generator for implementing said method.
Abstract:
A compact infrared (IR) scene generator capable of generating multiple-color mid-IR scenes through the use of readily available commercial near-IR lasers and a fluorescent conversion material (FCM). Such a scene generator would be useful to test IR imaging sensors in a controlled laboratory environment. In operation, each laser emits energy at an initial wavelength outside the operating band of an IR imaging sensor. This energy of a first set of wavelengths is written onto the FCM in patterns, which collectively form an IR scene. The FCM absorbs the energy and radiates it at wavelengths longer than the initial wavelengths, i.e., a second set of wavelengths. As these longer wavelengths are within the operating waveband of the IR imaging sensor, the patterns written onto the FCM are detectable by it.
Abstract:
Disclosed is a method of measuring a wavefront aberration of a predetermined optical system being serviceable for imaging a pattern, wherein the method includes storing information related to a light intensity distribution on a pupil plane of the predetermined optical system in a reference state, and detecting a wavefront of the predetermined optical system in an arbitrary state, on the basis of the stored information.
Abstract:
An apparatus and method for imaging a sample, the apparatus comprising: a source for irradiating a sample with a beam of substantially continuous electromagnetic radiation having a frequency in the range 25 GHz to 100 THz; means for subdividing an area of the sample which is to be imaged into a two dimensional array of pixels; means for detecting radiation from each pixel wherein the detector is configured to detect a phase dependent quantity of the detected radiation which is measured relative to the radiation which irradiates the sample.