Abstract:
Providing a UV/fluorescence detecting apparatus and a sensing method thereof which is capable of detecting a fluorescent pattern and an ultraviolet reflection light and small and cheap. Further, providing a UV/fluorescence detecting apparatus and a sensing method thereof capable of detecting a fluorescence of a specific color. The UV/fluorescence detecting apparatus includes a sensor comprising a light source portion including an ultraviolet ray LED for emitting ultraviolet ray through an opening window portion and an ultraviolet ray monitor provided beside this ultraviolet ray LED, a light detector portion disposed in a chamber partitioned with a partition plate for receiving an incident light impinging through the opening window portion, the partition plate 6a for partitioning between the light source portion and the light detector portion; a transparent body provided on the both opening window portions, a first filter provided on a window portion on projection side of the ultraviolet ray for allowing the light of an ultraviolet ray region thereof to pass through and a second filter provided on a window portion on light receiving side of the incident light for allowing the light of a visible light region thereof to pass through.
Abstract:
A modulated reflectance measurement system includes two lasers for generating a probe beam and an intensity modulated pump beam. The probe beam is in the visible spectrum and the pump beam is in the ultra-violet spectrum. The pump and probe beams are joined into a collinear beam and focused by an objective lens onto a sample. Reflected energy returns through the objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A processor uses the Q and/or I signals to analyze the sample.
Abstract:
Using an array of optical sensors affixed to measure interactions on a surface of an object, in combination with a specially configured personal computer, dynamic mapping of interaction is provided. One application maps washover of an object towed in a large body of water. Data are collected on optical characteristics of the interaction such as reflectivity at a boundary. For example, in one embodiment the reflectivity at an optical fiber/seawater boundary is compared to that of an optical fiber/air boundary and dynamic measurements made using an optical time domain reflectometer (OTDR). These data are then processed using specialized software to yield representation of the dynamics (spatial and temporal) of selected washover events on a surface of interest. The system specifically provides a real-time representation of washover, including two and three-dimensional visualization of washover, as well as recording selected data for future use. Methods of employment of the system are also provided.
Abstract:
A delayed optical signal is generated from an inputted optical signal by cyclically transmitting the inputted optical signal between at least two ends of an optical medium and outputting the inputted optical signal from one of the ends of the optical medium after at least one transmission cycle via the optical medium. Each transmission of the inputted optical signal in a direction via the optical medium is carried out over a wavelength resource that is different from a wavelength resource used in a preceding transmission of the inputted optical signal in a direction via the optical medium. Interference among repeated transmissions of the inputted optical signal via the optical medium is therefore minimized or even avoided. Related apparatus and method are also described.
Abstract:
The present invention provides an in vitro method of determining the protection efficacy of a substance against a cutaneous photobiological phenomenon caused by exposure to solar radiation. The photobiological phenomenon has an action spectrum S(null). The method comprises determining a dynamic absorption spectrum DO(null,t) representing the variation in the absorption spectrum of the substance as a function of duration of exposure to a source of radiation emitting in the ultraviolet, and calculating the protection efficacy of the substance against the photobiological phenomenon on the basis of the dynamic absorption spectrum.
Abstract:
A wafer presence optical sensor system comprises a transfer chamber adapted to receive a wafer, an optical sensor comprising means emitting a sensing beam and means receiving a beam reflected from the wafer to ascertain wafer presence in the chamber, and means to reflect away the sensing beam when reaching a chamber bottom. The reflecting means includes an oblique area made in an inner surface of the chamber bottom or, alternatively, a body with an oblique area placed on the inner surface. Reflecting away the sensing beam when no wafer is present in the transfer chamber prevents the receiving means from receiving the beam reflected from the chamber bottom and thus thwarts the misinterpretation of wafer presence.
Abstract:
In a distance measurement and photometry sensor device in which sensors are arranged on the same plane to be formed in the form of a semiconductor chip, a photometry sensor is arranged such that its sensor center is deviated by a predetermined distance in a direction perpendicular to a base length direction in which sensor centers of a pair of first and second line sensors are connected with each other.
Abstract:
Embodiments of the invention provide an improved method and apparatus for sensing position and/or status of an object. For one embodiment, a method generally includes illuminating the object with an optical pulse source and supplying a first optical pulse to a photo-detector, causing a resonant circuit formed by the photo-detector and an inductor to generate a resonant signal. The method also includes supplying at least a second optical pulse to the photo-detector causing a change in the resonant signal, wherein the second optical pulse is reflected from the object, monitoring the change in the resonant signal, and determining a position of the object based on the monitored change in the resonant signal. A velocity, direction of travel and/or acceleration of the object may also be determined from successive position measurements.
Abstract:
The invention provides a radiation sensor including a housing, an attenuator with at least one cavity for attenuating optical radiation, and a detector, as well as an optical attenuator including an attenuator body an entrance with one multi-stage input opening or plural input openings, and means for transferring radiation inside of the attenuator body and then to an detector. The invention further provides methods for using the radiation sensor or the optical attenuator.
Abstract:
Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.