Abstract:
A pressure-sensitive sensor which is a load detecting device of the present invention is structured to include: an optical fiber of a predetermined length; a light-emitting element, disposed at a longitudinal direction one end side of the optical fiber, for emitting light and making the light incident from one end of the optical fiber; a light-receiving element, disposed at a longitudinal direction other end side of the optical fiber, for receiving light which has passed through the optical fiber and outputting a signal corresponding to an amount of received light; and a power source wire for light-emission and a ground wire for light-emission which are wound around an outer periphery of the optical fiber, and are formed in spiral forms along the outer periphery, and are connected to the light-emitting element. The power source wire for light-emission, which forms a spiral form at the outer periphery of the optical fiber, functions as a pressure element and improves sensitivity of the pressure-sensitive sensor.
Abstract:
The present invention relates to an ultraviolet detector and manufacture method thereof, in which a buffer layer is formed on a baseplate and a P-type GaN layer is formed on the baseplate by using epitaxial method. By availing ion-distribution-and-vegetation technology, a first N-type GaN layer is vegetated and invested in the P-type GaN layer by distributing and vegetating Sinull ions in that layer, and a second N-type GaN layer having a thicker ion concentration is invested in the N-type GaN layer. Finally, an annular and a circular metallic layer are formed between the P-type GaN layer and the first N-type GaN layer as well as inside the second N-type GaN layer, respectively, to serve for respective ohmic contact layers. The present invention is characterized in that an incident light can project upon a depletion layer of the GaN planar structure to have the detection efficiency significantly improved.
Abstract:
A receiving device for cooperation with an optical fiber is provided with a sensor (3). The sensor (3) comprises two or more distinct sensor elements (4a, . . . , 4d) delivering an output signal with a strength that depends on the intensity applied to the sensor element (4a, . . . , 4d). A greatest dimension (a) of the sensor element (4a, . . . , 4d) is at most equal to half the diameter of a diffraction-limited spot (5) of the beam (2) exiting the optic fiber (1) at the location of the sensor elements (4a, . . . , 4d). A diametrical dimension (c) of the part of the sensor (3) provided with sensor elements (4a, . . . , 4d) is greater than the diameter of the beam (2) exiting from the optical fiber (1). Means (15) are present for determining the strength of the output signal from each sensor element (4a, . . . , 4d).
Abstract:
There is described a method of characterizing a short laser pulse, the method comprising the steps of obtaining root-mean-square widths of the pulse through second order moments of the pulse; obtaining a spectral width of the pulse using the root-mean-square widths; obtaining a root-mean square temporal width of the pulse; and defining a Pulse Quality Factor proportional to a product of the spectral width and the temporal width. This approach does not require complete characterization of laser pulses and eliminates the need of any assumption to interpret autocorrelation traces. The method can be applied to pulses of arbitrary shape.
Abstract:
A tubular holder for an actinometric monitoring element for monitoring the irradiance of ultraviolet light within a liquid to be treated for microorganism control. The holder extends into the interior of a vessel or a pipeline that carries a fluid to be treated by exposure to ultraviolet light. A transparent end cap is carried at the end of the holder that is within the vessel or pipeline. Positioned within the holder is an actinometric monitoring element that can be either a transparent container for an actinometric solution or a photocell, each for sensing the irradiance of ultraviolet light emitted by light sources positioned within the vessel or pipeline. The holder is removably received in a sleeve that extends through the wall of the vessel or pipeline.
Abstract:
A position sensor for ultraviolet beams includes a beam positioning member for directing an ultraviolet beam along a path; a downconverter member for converting the beam to visible light; a position sensing member for sensing position of visible light thereon; and relay optics for directing the visible light to the position sensing member; wherein the position sensing member is communicated with the beam positioning member for conveying information regarding position of the visible light to the beam positioning member.
Abstract:
The invention is directed to an arrangement for monitoring the energy radiated by an EUV radiation source with respect to energy variations acting in an illumination beam path, particularly for controlling the dose stability in EUV lithography for chip fabrication in semiconductor technology. The object of the invention, to find a novel possibility for detecting variations in the radiation emitted by EUV sources which allows fluctuations in pulse energy as well as spatial fluctuations acting in the illumination beam path to be detected, is met according to the invention in a radiation source having a plasma column emitting extreme ultraviolet radiation in that a detection beam path is separated from the illumination beam path with respect to the plasma column and has an energy monitoring unit for measuring pulse energy, so that the illumination beam path is not impaired by the energy measurement, and the detection beam path is matched to the illumination beam path with respect to bundle extension and optical losses.
Abstract:
Under an embodiment, a system includes an array of analog photocells; a first plurality of shift cells, each shift cell in the first plurality of shift cells being coupled to a corresponding analog photocell; and a second plurality of shift cells, each shift cell in the second plurality of shift cells being coupled to a corresponding shift cell in the first plurality of shift cells; and a differential operational amplifier having a first input coupled to a terminating output of the first plurality of shift cells and a second input coupled to a terminating output of the second plurality of shift cells.
Abstract:
The present invention is directed to a micromirror optical multiplexer for directing light to an array of sensors. The micromirror optical multiplexer directs light from one or more sources onto multiple, coplanar sensors for the purpose of exciting fluorescence. The micromirror optical multiplexer includes at least one light source and a micromirror array having a top face and up to four side faces. Pivotable mirrors of the micromirror array are arranged in a multiple row, multiple column format on the top face. In addition, each of the side faces of the micromirror array has at least one row of pivotable mirrors. By pivoting one side face mirror and one top face mirror, a light source entering at one comer of the micromirror array can be directed to exit near normal incidence anywhere on the bottom of the device.
Abstract:
A system and method for measuring radiation. In one embodiment, a radiometer includes an inlet port, a light sensor operatively coupled to the inlet port, and a direction sensor adapted to detect the orientation of the inlet port. In another aspect, a radiometer has a base, a housing pivotally mounted to the base, an aperture in the housing, a radiation sensor in communication with the aperture, and a direction sensor adapted to detect the orientation of the housing relative to the base. In yet another aspect, a radiometer has a housing including at least one aperture, and a radiation sensor adapted to detect the irradiance and direction of origin of radiation entering the aperture. A method is disclosed for detecting the irradiance of radiant energy from a source in at least two dimensions. The method involves the steps of providing a radiometer of the present invention and positioning the radiometer in the path of radiant energy emitted from the source.