Abstract:
A strain sensor apparatus for a rotatable shaft including a radiation emitter/receiver, a vibration element attached to the shaft and a reflector that is positioned to reflect radiation onto the vibration element.
Abstract:
The invention relates to a sensor as a built-in component of an object, especially an elastic object, the sensor comprising a polymer material containing electroconductive additives according to the invention and thereby acting as an expansion sensor (2), in that it measures the static and dynamic expansions of the object in relation to the acting forces and also monitors the changes of the polymer material generated by the static and dynamic expansions of the object over time. The invention also relates to a sensor arrangement (1) acting especially in combination with the following components: an expansion sensor (2), a fixed resistor (3), an analog/digital converter (4), a micro-controller comprising a memory (5), a radio interface (6), a controlled current/voltage source (7), an energy supply (8), a coupling coil (9), and a receiving unit (10).
Abstract:
An improved method and apparatus for direct acting dynamic mechanical analysis capable of accurate data at high frequencies where during temperature ramping, the sample is not in contact with both of 1) the strain excitation means and 2) the stress sensing means, thus providing numerous advantages and allowing additional analysis of sample dimension data and zero strain state.
Abstract:
An electrical pressure sensor is provided with a method for measuring pressure applied to a sensor surface. The method provides an electrical pressure sensor including a sealed chamber with a top surface, first electrode, second electrode, an elastic polymer medium, and metallic nanoparticles distributed in the elastic polymer medium. When the top surface of the sensor is deformed in response to an applied pressure, the elastic polymer medium is compressed. In response to decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance between metallic nanoparticles, the electrical resistance is decreased between the first and second electrodes through the elastic polymer medium.
Abstract:
Tactile sensors are disclosed that mimic the human fingertip and its touch receptors. The mechanical components are similar to a fingertip, with a rigid core surrounded by a weakly conductive fluid contained within an elastomeric skin. The deformable properties of the finger pad can be used as part of a transduction process. Multiple electrodes can be mounted on the surface of the rigid core and connected to impedance measuring circuitry within the core. External forces deform the fluid path around the electrodes, resulting in a distributed pattern of impedance changes containing information about those forces and the objects that applied them. Strategies are described for extracting features related to the mechanical inputs and using this information for reflexive grip control. Controlling grip force in a prosthetic having sensory feedback information is described. Pressure transducers can provide sensory feedback by measuring micro-vibrations due to sliding friction.
Abstract:
(Problem)To provide a load detection sensor capable of stably weighing a heavy object to be weighed in high precision(Means to solve the problem)The load detection sensor 40 according to the present invention comprises a force sensor 41 including a tuning fork vibrator and a block body 42 that has a rectangular parallelepiped outer shape and transmits an applied load to the force sensor by using a lever to reduce the load. It is characterized in that the block body 42 contains therein a lever mechanism and a Roberval mechanism by working on the longitudinal side thereof and that the force sensor 41 is coupled to the side of the block body 42. Although the block body is cut and ground in the side for fabricating the lever mechanism and the Roberval mechanism, it maintains the rectangular parallelepiped outer shape and sufficient mechanical strength, thereby enabling to stably reduce the applied load.
Abstract:
A method and an encoder are adapted to determine one or more parameters, each parameter being related to a type of vibration for the encoder. The encoder is mounted on an axis and arranged to detect rotary movement of the axis.
Abstract:
The present device enables measurement of the susceptibility of corn plants to root lodging. The device is used to push over a corn stalk and the force used to push over the stalk, and the vibration of the stalk caused by the push are recorded. As material breaks in the stalk, an accelerometer, measures stalk vibration response to the breaking events; the data is then recorded to allow quantitative measurements of the susceptibility of corn plants to root lodging. This allows meaningful comparisons of various hybrids at early stages of hybrid evaluation and advancement.
Abstract:
The invention discloses a weighing sensor and an electronic scale provided with the same. The weighing sensor comprises a flat plate formed into helical shape, including successively a load-supporting portion, a strain portion and a bearing portion from the center to the outer of this plate, with the load-supporting portion situated between and surrounded by the bearing portion and the strain portion; wherein the load-supporting portion and the bearing portion are respectively used to bear the acting force and the reaction force in opposite directions, and a strain gauge is mounted on the strain portion. The electronic scale comprises at least three weighing sensors, wherein the bearing portion of the sensor is mounted on the scale body, the load-supporting portion directly contacts the supporting leg of the scale, which contacts the plane on which the scale is positioned. The present invention has small thickness, simple structure and low manufacturing cost.
Abstract:
The present disclosure relates to a pressure sensor, in particular for detecting and measuring at least one bearing pressure applied to a support device, in which said pressure sensor comprises at least one resistive force-detector cell placed between at least two protective plates suitable for avoiding any pressure bearing at a point or along a line directly against a surface of the resistive cell and for converting such a pressure into uniform pressure over the entire area of the resistive cell. The present disclosure also relates to a support device including such a pressure sensor and to a method of measuring pressures applied to such a support device by an object to be supported such as the body of a patient.