Abstract:
A photoelectric conversion device includes a plurality of light receiving elements, a plurality of A/D conversion units, and an offset giving unit. The light receiving elements are arrayed in one direction and each convert a light signal into an electrical signal. The A/D conversion units perform A/D conversion on the electrical signals output from the light receiving elements. The offset giving unit gives an offset voltage of a certain level to the electrical signals output from the light receiving elements without flowing a steady current before the electrical signals are input into the A/D conversion units.
Abstract:
A photoelectric conversion device includes a plurality of light receiving elements, a plurality of A/D conversion units, and an offset giving unit. The light receiving elements are arrayed in one direction and each convert a light signal into an electrical signal. The A/D conversion units perform A/D conversion on the electrical signals output from the light receiving elements. The offset giving unit gives an offset voltage of a certain level to the electrical signals output from the light receiving elements without flowing a steady current before the electrical signals are input into the A/D conversion units.
Abstract:
An image reading apparatus includes: a plurality of light sources to emit light to a target to be read from a plurality of different irradiation positions; an illumination controller to sequentially and alternately turn on or off the plurality of light sources with a blinking cycle not perceptible to the human eye; an image capturing device to photoelectrically convert, pixel by pixel, reflected light of the light emitted to the target from the plurality of light sources to capture a plurality of read images; a memory to store one or more read images of the plurality of read images being captured; and a synthesizer to synthesize preset regions of the plurality of read images using the one or more read images stored in the memory to generate a synthesized read image representing the target, the preset region of each of the plurality of read images having an image level change caused by reflected light that is smaller than a threshold.
Abstract:
A signal processing device includes a signal output circuit, a controller, and a corrector. The signal output circuit outputs a signal according to a physical quantity being input. The controller controls the signal output circuit. The corrector corrects a signal to be corrected. The signal to be corrected is output from the signal output circuit. The signal output circuit selectively performs one of first operation of outputting a characteristic signal that indicates characteristics of the signal output circuit and second operation of outputting a pseudo signal that is generated spuriously, according to control of the controller. The corrector corrects the signal to be corrected based on one of the characteristic signal and the pseudo signal output from the signal output circuit.
Abstract:
Multiple photodetectors that photoelectric convert incident light to output a pixel signal; multiple analog/digital (A/D) convertors that A/D convert a plurality of pixel signals that are output by the photodetectors in parallel in a plurality of systems; a retaining unit that retains the pixel signals A/D converted in parallel by the A/D convertors in an aligned manner in one direction, to be arranged in reading order from a first pixel signal to a final pixel signal; and multiple transfer units that transfer the pixel signals arranged and retained by the retaining unit, sequentially from the first pixel signal from a first-pixel-signal retaining position toward a final-pixel signal retaining position of the retaining unit are included.
Abstract:
A photoelectric conversion device includes a plurality of light receiving elements, a plurality of A/D conversion units, and an offset giving unit. The light receiving elements are arrayed in one direction and each convert a light signal into an electrical signal. The A/D conversion units perform A/D conversion on the electrical signals output from the light receiving elements. The offset giving unit gives an offset voltage of a certain level to the electrical signals output from the light receiving elements without flowing a steady current before the electrical signals are input into the A/D conversion units.
Abstract:
An opto-electronic converter includes a plurality of light-receiving elements configured to convert light of different colors into analog signals, each of the analog signals representing a pixel, an amplifier unit configured to amplify the analog signals, into which the light is converted by the light-receiving elements, in each pixel group, the pixel group including a plurality of the light-receiving elements, the plurality of light-receiving elements converting light of different colors, and a gain switch unit configured to switch, for each of the light-receiving elements included in the pixel group, a gain of the amplifier unit to a gain determined in advance depending on a color of the light converted by the light-receiving element.
Abstract:
Provided is an apparatus capable of, even when an object is moving, measuring the position of the object at a high accuracy. According to a vehicle periphery monitoring apparatus (10), an enlargement factor relevant to when the degree of correlation between an enlarged local region (EB(γi)) obtained by enlarging a local region (B(k−1)) at a previous time (k−1) and a local region (B(k)) at a time (k) later than the previous time (k−1) becomes the maximum is calculated as a change rate (Rate(k)) of the size of the local region (B(k)). Based on the change rage (Rate(k)), it is possible to measure the distance (Z(k)) from a vehicle (1) to the object or the position (P(k)) at a high accuracy even when the object is moving.
Abstract:
An object is to provide a work vehicle whose drive portion can be downsized. An engine having an engine output shaft, an electric motor driven by a battery which is attached integrally to the engine output shaft so as to drive the engine output shaft, a traveling drive portion having a transmission connected to the engine output shaft and a traveling drive shaft which is rotated by the transmission and which moves the traveling wheels, a work drive portion selectively performing work by means of power from the engine output shaft, a generator charging the battery, a traveling regeneration portion transmitting regenerative energy of the traveling drive portion to the generator, a work regeneration portion transmitting regenerative energy of a fork drive portion to the generator, and a one-way clutch for traveling and a one-way clutch for work provided, respectively, to the traveling regeneration portion and the work regeneration portion, which suppress transmission of motive power from the generator, are included.
Abstract:
A tabletop type optical information reader has a projection unit, a trigger unit, a decode unit, a data processing unit, a memory unit, and a switch unit. The projection unit projects light to a read object. The trigger unit instructs the projection unit for projecting light. The decode unit receives reflected light from the read object and decodes information contained in the read object. The data processing unit processes the decoded data provided by the decode unit. The memory unit stores at least one function that can be set in the optical information reader. The switch unit calls the function to be set.