Abstract:
A membrane-electrode assembly, containing an electrode catalyst containing a base metal complex, in which exchange current density i0 obtained from a Tafel plot, which is related to current density and voltage, is 5.0×10−4 Acm−2 or more, and in which a Tafel slope obtained from the Tafel plot is 450 mV/decade or less; anda membrane-electrode assembly, containing catalyst layers each containing an electrode catalyst on both sides of an electrolyte membrane, in which at least one of the catalyst layers comprises a non-noble metal-based electrode catalyst, and in which the electrolyte membrane is a hydrocarbon-based electrolyte membrane.
Abstract:
An aromatic graft polymer containing one or more kinds of repeating units represented by the following formula (1). (In the formula, Ar1 represents a divalent residue of a π-conjugated cyclic compound having a side chain represented by the following formula (2), the side chain being bonded to a carbon atom which is included in the ring structure of the divalent π-conjugated-cyclic-compound residue represented by Ar1 and has an sp2 hybrid orbital: (wherein Ar2 represents a divalent group having a residue of a π-conjugated cyclic compound; X1 represents a direct bond or a divalent group selected from the group consisting of NQ1-, —PQ2-, and —BQ3-, wherein Q1 to Q3 each independently represents a substituent; Z represents a direct bond or a divalent connecting group; k is an integer of 3 or larger; and E1 represents hydrogen, halogeno, or a monovalent organic group, provided that when two or more Ar2's, X1's, and Z's are present, then they each may be the same or different and when two or more side chains represented by the formula (2) are present, then they may be the same or different.))
Abstract:
A high-molecular compound, characterized by containing a chain consisting of repeating units represented by the general formula (1) and having an average number of repeating units constituting the chain of 3 or above and a ratio of bonds formed between the head and the tail to all the bonds formed between repeating units of 85% or above: (1) wherein Ar1 is a divalent aromatic group whose aromatic ring is an aromatic hydrocarbon ring; R1 is a substituent on Ar1; n is an integer of 0 to 30; when n is 2 or above, plural R1's may be the same or different from each other, when the carbon atoms of a repeating unit of the general formula (1) are numbered as a divalent group according to Nomenclature of Organic Chemistry by IUPAC, between the two carbon atoms having free valencies, the carbon atom with a smaller number is defined as the head and the carbon atom with a larger number is defined as the tail; and no repeating unit of the general formula (1) has a two-fold axis of symmetry intersecting the straight line joining the head and the tail at right angles at the middle point.
Abstract:
To provide nitrogen-containing aromatic compounds with excellent oxygen reduction activity, metal complexes containing them, and catalysts and electrodes employing the same, the present invention provides an aromatic compound satisfying the following conditions (a) and (b): (a) It has 2 or more structures surrounded by at least 4 coordinatable nitrogen atoms (which structures may be the same or different), (b) At least one of the nitrogen atoms composing the structure is a nitrogen atom in a 6-membered nitrogen-containing heterocyclic ring.
Abstract:
A metallic composite in which a conjugated compound having a molecular weight of 200 or more is adsorbed to a metallic nanostructure having an aspect ratio of 1.5 or more, for example, a metallic composite in which a compound having a group represented by the formula (I) or a repeating unit represented by the formula (II) or both of them is adsorbed to a metallic nanostructure having an aspect ratio of 1.5 or more, is useful for electronic devices such as a light-emitting device, a solar cell and an organic transistor.
Abstract:
A silver-(conjugated compound) composite comprising silver particles having a number-average Feret diameter of not more than 1,000 nm, and a conjugated compound having a weight-average molecular weight of not less than 3.0×102 adsorbed to the silver particles. The composite exhibits excellent conductivity and charge injection properties, and excellent dispersibility within non-polar solvents.
Abstract:
An electronic device that serves as a high-brightness electroluminescent device includes a layer containing a polymer compound having one or more structural units selected from a structural unit represented by formula (1) and a structural unit represented by formula (14) as a charge injection layer and/or a charge transport layer: wherein Ar1 and Ar2 represent certain fused polycyclic aromatic groups; R1, R2, R6 and R7 represent certain organic groups; m1, m2 and m6 represent an integer of 1 or more; m7 represents an integer of 0 or more; and when R1, R2, R6 and R7 are each plurally present, they each may be the same or different.
Abstract:
A method for producing an aromatic polymer comprising polycondensing an aromatic compound of the following formula (I) in the presence of a palladium complex containing a phosphine compound of the following formula (II): (wherein, Ar represents an aromatic ring-containing bi-functional organic group. X represents a halogen atom, nitro group or group of the formula —SO3Q (wherein, Q represents an optionally substituted hydrocarbon group). Y represents an oxygen atom, sulfur atom or the like, and n represents 0 or 1. M represents a hydrogen atom, —B(OQ1)2 or the like (Q1 represents a hydrogen atom or hydrocarbon group.) P(R1)3 (II) (wherein, R1 represents a group of the following formula (III) or a group of the following formula (IV) and three R1s may be the same or different, providing at least one of three R1s is a group of the following formula (III)) —C(R2)3 (III) (wherein, R2 represents a hydrogen atom or an optionally substituted hydrocarbon group) (wherein, R3 to R7 represent each independently a hydrogen atom, optionally substituted hydrocarbon group or the like).
Abstract:
Provided are a light-emitting device and a photovoltaic cell having excellent characteristics. A light-emitting device (10) includes a cathode (34), an anode (32), a light-emitting layer (50) interposed between the cathode (34) and the anode (32), and an electron injection layer (44) provided between the cathode (34) and the light-emitting layer (50) and connected to the cathode (34), in which at least one of the anode (32) and the cathode (34) contains a conductive material having an aspect ratio of 1.5 or more, and the electron injection layer (44) contains an organic compound having at least one of an ionic group and a polar group.
Abstract:
To provide nitrogen-containing aromatic compounds with excellent oxygen reduction activity, metal complexes containing them, and catalysts and electrodes employing the same, the present invention provides an aromatic compound satisfying the following conditions (a) and (b): (a) It has 2 or more structures surrounded by at least 4 coordinatable nitrogen atoms (which structures may be the same or different), (b) At least one of the nitrogen atoms composing the structure is a nitrogen atom in a 6-membered nitrogen-containing heterocyclic ring.