Abstract:
A flat fluorescent lamp and a liquid crystal display apparatus having the flat fluorescent lamp are provided. The flat fluorescent lamp includes a lamp body having first and second substrates that face each other and discharge spaces that are formed therebetween, and a protective member that is formed on an inner surface of at least one of the first or second substrates, wherein the protective member includes a cesium compound.
Abstract:
A backlight assembly includes a receiving container having a receiving space, a flat-type light source, an optical member, and an inverter. The flat-type light source has a plurality of light emitting spaces spaced apart from each other and is received into the receiving space. The optical member has a prism pattern formed in areas corresponding to areas between adjacent light emitting spaces and disposed at a light emitting direction of the flat-type light source. The inverter generates a voltage for the flat-type light source. The prism pattern 1o includes prisms having a substantially trigonal prism and continuously connected one after another. Thus, the backlight assembly may improve brightness uniformity thereof and have a reduced thickness.
Abstract:
A surface light source device may include a first substrate and a second substrate having a plurality of space-dividing portions to divide an inner space between the first and second substrates into a plurality of discharge regions. First and second electrodes may be formed on an outer face of the first substrate or the second substrate, and the first and second electrodes have a plurality of openings corresponding to the space-dividing portions. The openings have a first opening width along a longitudinal direction of the space-dividing portions, which is smaller than a line width of the first and second electrodes. The light source may be used in a flat panel display apparatus, such as a liquid crystal display apparatus.
Abstract:
A light emitting device includes a light emitting body disposed on a substrate, which has light emitting sections apart from each other, a light generating member assembled with the light emitting body, and a light reflecting member disposed on the substrate between the light emitting sections. The light generating member receives driving voltages to generate light from the light emitting body, and the light reflecting member reflects light traveling onto the light reflecting member. The light emitting device also includes a light reflection body and a supporting member disposed on the substrate between the light emitting sections. A display device includes the light emitting device, a display panel receiving the light from the light emitting body, which displays images using the light and image data externally provided, and a container receiving the light emitting device and the display panel.
Abstract:
Disclosed are an apparatus for changing a pathway of light according to a visual field angle to relax a gray scale inversion and for use in a liquid crystal display device in a twisted nematic mode, and the liquid crystal display device having the same. The light pathway partially changing apparatus is disposed on a liquid crystal display panel changes the pathway of the light partially so that a part of the light is substantially transmitted in the same direction as the light proceeds while the rest of the light is transmitted through a changed pathway, in order to change a brightness of the light according to a visual field angle of a liquid crystal display panel to restrain a gray scale inversion of the images while the light passes through the liquid crystal display panel to make the images on the liquid crystal display panel. The rest of the light transmitted through the changed pathway causes to, obtain the visual field angle of the liquid crystal display panel, while restrains the gray scale inversion of the images along with the part of the light passing through the liquid crystal display panel in the same direction as that of the light transmitted through a center of the liquid crystal display panel.
Abstract:
A backlight assembly includes; a plurality of light guide blocks disposed substantially in parallel with each other along a first direction, each of the plurality of light guide blocks including; a light guide plate (“LGP”) having a wedge-shape decreasing in thickness from a first side thereof to a second side thereof, and a light source unit disposed facing a side surface of the LGP, and a light source driving unit which individually controls the light source units of the plurality of light guide blocks to emit light via a local dimming method.
Abstract:
Provided is an optical plate that resolves white screen generation while maintaining emission brightness, a backlight assembly and a display device including the same. The optical plate is a light guide plate for a liquid crystal display. The light guide plate includes at least one plane in which a plurality of uneven patterns forming crests and valleys are formed. The plurality of uneven patterns is formed such that the crests rise to a plurality of different heights.
Abstract:
A light guide plate and a display device having the same are provided, which can uniformly emit light on the whole. The light guide plate includes a light input part including first and second areas to which light is incident, and a light output part neighboring the light input part and outputting light. The light having passed through the first area is emitted with its light quantity distribution biased in a first direction, and the light having passed through the second area is emitted with its light quantity distribution biased in a second direction different than the first direction.
Abstract:
Disclosed are a prism sheet and a liquid crystal display having the same. The prism sheet includes a base and a plurality of prism mountains. The base includes a front surface and a rear surface facing the front surface. The prism mountains are integrally formed with the base on the rear surface of the base. At least one prism mountain includes a plurality of light incidence surfaces and a reflective surface. The light incidence surfaces receive light. The reflective surface is adjacent to one of the light incidence surfaces to reflect the light. A vertical angle of the prism mountains formed between the light incidence surface adjacent to the reflective surface and the reflective surface, is in a range of about 70° to about 100°.
Abstract:
A dual prism sheet includes a base film, upper prisms formed on an upper surface of the base film and lower prisms formed on a lower surface of the base film. A cross-section of the upper and lower prisms is formed as an isosceles triangular shape having a base and a vertex angle, and a phase of the upper prisms is delayed between about 0 and about 0.5 times of a prism pitch with respect to a phase of the lower prisms.