Abstract:
Provided are an electron multiplier electrode using a secondary electron extraction electrode and a terahertz radiation source using the electron multiplier electrode. The electron multiplier electrode includes: a cathode; an emitter disposed on the cathode and extracting electron beams; a gate electrode for switching the electron beams, the gate electrode being disposed on the cathode to surround the emitter; and a secondary electron extraction electrode disposed on the gate electrode and including a secondary electron extraction layer extracting secondary electrons due to collision of the electron beams.
Abstract:
A method of aging a field emission device including a cathode and an anode arranged parallel to each other, an emitter arranged on the cathode to emit electrons to the anode, and a gate electrode arranged on the cathode adjacent to the emitter, the method including: supplying a voltage to the cathode; supplying a voltage to the gate; and then supplying a sufficiently low voltage to the anode so as to prevent a short-circuited portion between the cathode and the gate electrode from being permanently damaged due to an overcurrent.
Abstract:
An inorganic electroluminescent device includes; a conductive layer, a fluorescent material layer disposed on a surface of the conductive layer, a dielectric material layer disposed on a surface of the conductive layer substantially opposite to the surface on which the fluorescent material layer is disposed, a first electrode disposed on the fluorescent layer, and a second electrode disposed on the dielectric material layer.
Abstract:
Provided is an anode panel of a field emission type backlight unit. The anode panel includes a substrate, an anode formed on a lower surface of the substrate, a phosphor layer coated on a lower surface of the anode and a liquid pack disposed on an upper surface of the substrate, said liquid pack having a transparent cover having cylindrical lens type curved portions and transparent liquid filling in the curved portions.
Abstract:
A method of aging a field emission device including a cathode and an anode arranged parallel to each other, an emitter arranged on the cathode to emit electrons to the anode, and a gate electrode arranged on the cathode adjacent to the emitter, the method including: supplying a voltage to the cathode; supplying a voltage to the gate; and then supplying a sufficiently low voltage to the anode so as to prevent a short-circuited portion between the cathode and the gate electrode from being permanently damaged due to an overcurrent.
Abstract:
A method of aligning carbon nanotubes (CNTs) and a method of manufacturing a field emission device (FED) using the same, wherein a mold having an intaglio pattern is prepared, an aqueous solution containing an amphiphilic organic material and the CNTs are coated on a surface of a substrate, the mold is adhered to the substrate surface to cause the aqueous solution to flow into the intaglio pattern by a capillary force, and the mold is removed from the substrate surface to vertically align the CNTs on the substrate surface.
Abstract:
A method of aligning carbon nanotubes (CNTs) and a method of manufacturing a field emission device (FED) using the same, wherein a mold having an intaglio pattern is prepared, an aqueous solution containing an amphiphilic organic material and the CNTs are coated on a surface of a substrate, the mold is adhered to the substrate surface to cause the aqueous solution to flow into the intaglio pattern by a capillary force, and the mold is removed from the substrate surface to vertically align the CNTs on the substrate surface.
Abstract:
A field emission backlight device may include a first substrate and a second substrate separate from and roughly parallel to each other, a first anode electrode and a second anode electrode that face each other on inner surfaces of the first substrate and the second substrate, and cathode electrodes separate from and roughly parallel to one another between the first substrate and the second substrate. It may also include electron emission sources disposed on the cathode electrodes to emit electrons by an electric field and a phosphorous layer disposed on the first anode electrode or the second anode electrode.