Abstract:
The present invention relates to a biocompatible contrast agent and a method of its preparation. More particularly, the present invention relates to a multifunctional contrast agent manufactured by prepairing a novel polysuccinimide-based polymer by introducing an alkanolamine group to the main group of the polysuccinimide in addition to a biocompatible hydrophilic group, which improves bioavailability, and a hydrophobic group, which enables to maintain the form of stable nanoparticles during the formation of nano particles for a long period of time and to encapsulate a hydrophobic anticancer agent.
Abstract:
Provided are a photoresist composition having superior adhesion to an etch target film, a method of forming a pattern by using the photoresist composition, and a method of manufacturing a thin-film transistor (TFT) substrate. The photoresist composition includes an alkali-soluble resin; a photosensitive compound; a solvent; and 0.01 to 0.1 parts by weight of a compound represented by Formula 1: wherein R is one of hydrogen, an alkyl having 1 to 10 carbon atoms, a cycloalkyl having 4 to 8 carbon atoms, and a phenyl group.
Abstract:
Disclosed are biocompatible polymeric nanoparticles for drug delivery and a method for preparing the same. They can be prepared by mixing a tri-block copolymer, PEG, and a drug at a predetermined temperature to give a homogeneous polymeric mixture; solidifying the homogeneous polymeric mixture at room temperature; and dissolving the solidified polymeric mixture in an aqueous solution. Based on a polymer melting process, the method makes it easy to produce poloxamer nanoparticles at low cost. The nanoparticles show desired particle sizes suitable for use in drug delivery and a uniform particle size distribution. Consisting of a bilayer structure, the nanoparticles can contain sparingly soluble drugs. Also, the nanoparticles contain no organic solvents and are thus safe to the body because they are free of organic solvent residuals. Further, after being administered into the body, the nanoparticles with a high content of sparingly soluble drug entrapped therein can safely deliver the drug to target sites and stably release the drug at a controlled rate.
Abstract:
A bridge defect detecting method performed in a semiconductor memory device that includes a plurality of memory cells arranged at intersections between a plurality of word lines and a plurality of bit lines and a plurality of sense amplifiers connected to the bit lines, includes the operations of: enabling a first sense amplifier and a second sense amplifier; keeping the first sense amplifier in an enabled state and disabling the second sense amplifier; enabling the second sense amplifier, and detecting a bridge defect between the first memory cell and the second memory cell by reading data from a first memory cell of a first bit line connected to the first sense amplifier and a second memory cell of a second bit line connected to the second sense amplifier.
Abstract:
The present invention relates to a photoresist composition that comprises a resin that is represented by Formula 1, a method for forming a thin film pattern, and a method for manufacturing a thin film transistor array panel by using the same. Herein, R is a methylene group, and n is an integer of 1 or more.
Abstract:
The present invention relates to a new use of octylonium bromide as p-glycoprotein inhibitor to increase cellular uptake of drugs. More particularly, the present invention provides octylonium bromide as a p-glycoprotein inhibitor to increase cellular uptake of drugs such as anticancer drugs by taking octylonium bromide simultaneously with or proceeding drug administration.
Abstract:
Provided is a method of manufacturing a display substrate. In the method, a gate line, a data line crossing the gate line, and a switching device are formed on a base substrate. A passivation layer, a first resist layer and a second resist layer are formed on the base substrate. The first resist layer and the second resist layer are patterned to form a resist pattern and an etch-stop pattern, the etch-stop pattern having a sidewall protruding from a sidewall of the resist pattern. A portion of the passivation layer is removed to form a contact hole on a drain electrode of the switching device. A pixel electrode electrically connected to the switching device through the contact hole is formed. Thus, an undercut between an etch-stop pattern and a resist pattern may be more easily formed without over-etching a passivation layer.
Abstract:
A transflective type liquid crystal display device includes a first substrate having a pixel region, the pixel region including a transmission region and a reflection region that has a reflector formed thereon; a second substrate, which faces the first substrate, and on which a light guiding layer and a color filter layer are formed, the light guiding layer including a first medium and a second medium, a refractive index of the first medium and a refractive index of the second medium being different from each other; a liquid crystal layer interposed between the first and the second substrates; and a backlight assembly positioned outside of the first substrate to provide light onto the first medium in a reflection mode.
Abstract:
A semiconductor device includes first, second, and third wells. The first well is connected to a pad to which an external pin is connected and includes a first-type diffusion region that receives a well bias voltage. The second well is adjacent to the first well, and includes an insulating region and a second-type diffusion region outside the insulating region. The third well is adjacent to the second well and includes a first-type diffusion region that receives a first voltage. The insulating region inside the second well along with the first-type well diffusion region of the first well constitute a bipolar junction transistor that cuts off current flowing from the first well to the third well.
Abstract:
A method of fabricating a flexible mold for forming a flat display panel, comprising: forming a plurality of protrusions on a flexible film, forming plated patterns between the protrusions on the flexible film, the plated patterns having an inverted shape corresponding to partitions that define one or more sub-pixel regions in the panel, and removing the protrusions to form a flexible material.