Abstract:
The present disclosure relates generally to data hiding for retail product packaging and other printed objects such as substrates. One embodiment embeds an information signal in a spot color for printing on various substrates. The spot color is screened, and overprinted with process color tint. The tint is modulated prior to overprinting with optimized signal tweaks. The optimization can include consideration of a detector spectral dependency (e.g., red and/or green illumination). Many other embodiments and combinations are described in the subject patent document.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
The disclosure relates, e.g., to image processing technology including device to device communication. One claim recites an apparatus comprising: a camera for capturing imagery; and one or more processors configured for: analyzing a plurality of image frames captured with said camera, the plurality of image frames representing a plurality of graphics displayed on a display screen of a portable device, in which each of the graphics comprises an output from an erasure code generator, in which the erasure code generator produces a plurality of outputs corresponding to a payload; analyzing the plurality of image frames to decode outputs from the plurality of graphics; reconstructing the payload from decoded outputs; and utilizing the payload to carry out an action. A great variety of other features, arrangements and claims are also detailed.
Abstract:
The present disclosure relates generally to data hiding for retail product packaging and other printed objects. One embodiment embeds an information signal in a spot color for product packaging. The spot color is screened, and overprinted with process color tint. The tint is modulated prior to overprinting with optimized signal tweaks. The optimization can include consideration of a detector spectral dependency (e.g., red and/or green illumination). Many other embodiments and combinations are described in the subject patent document.
Abstract:
Object recognition by point-of-sale camera systems is aided by first removing perspective distortion. Yet pose of the object—relative to the system—depends on actions of the operator, and is usually unknown. Multiple trial counter-distortions to remove perspective distortion can be attempted, but the number of such trials is limited by the frame rate of the camera system—which limits the available processing interval. One embodiment of the present technology examines historical image data to determine counter-distortions that statistically yield best object recognition results. Similarly, the system can analyze historical data to learn what sub-parts of captured imagery most likely enable object recognition. A set-cover strategy is desirably used. In some arrangements, the system identifies different counter-distortions, and image sub-parts, that work best with different clerk- and customer-operators of the system, and processes captured imagery accordingly. A great variety of other features and arrangements are also detailed.
Abstract:
Variable data printing workflows are enhanced for use with content that includes 2D code patterns, such as digital watermark data. One arrangement includes applying a filter to a content stream within a PDF document to extract both first variable pattern data for a first watermark pattern and second variable pattern data for a second watermark pattern. A first composite watermark pattern is then defined based on the extracted first variable watermark pattern data in conjunction with static watermark pattern data, and a second composite watermark pattern is defined based on the extracted second variable watermark pattern data in conjunction with the static watermark pattern data. A variety of other features and arrangements are also detailed.
Abstract:
A retail checkout system decodes machine-readable indicia from a composite image frame produced from a sequence of captured image frames. Different regions in the composite image are derived from different ones of the image frames in the captured sequence. Another embodiment generates a composite image frame from image frames captured with different camera focus settings. Still other embodiments concern neural networks, including their training to segment different items presented on a retail checkout surface. Other neural network embodiments discern on which of two items a machine readable indicia appears, when the visual context is ambiguous. A variety of other features and arrangements are also detailed.
Abstract:
The present disclosure relates to advanced image signal processing technology including: i) rapid localization for machine-readable indicia including, e.g., 1-D and 2-D barcodes; and ii) barcode reading and decoders. One claim recites: an image processing method comprising: obtaining 2-dimensional (2D) image data representing a 1-dimensional (1D) barcode within a first image area; generating a plurality of scanlines across the first image area; for each of the plurality of scanlines, synchronizing the scanline, including decoding an initial set of numerical digits represented by the scanline, in which said synchronizing provides a scale estimate for the scanline; using a path decoder to decode remaining numerical digits within the scanline, the path decoder decoding multiple numerical digits in groups, in which the scale estimate is adapted as the remaining numerical digits are decoded; and providing decoded numerical digits as an identifier represented by the scanline. Of course, other combinations and claims are described within the present disclosure.
Abstract:
The present disclosure relates generally to data hiding for retail product packaging and other printed objects such as substrates. One embodiment embeds an information signal in a spot color for printing on various substrates. The spot color is screened, and overprinted with process color tint. The tint is modulated prior to overprinting with optimized signal tweaks. The optimization can include consideration of a detector spectral dependency (e.g., red and/or green illumination). Many other embodiments and combinations are described in the subject patent document.
Abstract:
Image processing technology embeds signal (e.g., digital watermarks) within imagery during a raster image process(or). One claim recites: an image processing method of embedding a signal within imagery using a raster image processing (RIP), comprising: obtaining a plurality of elements representing a signal; and modulating a plurality of print structures within the RIP according to the plurality of elements, in which said modulating varies density, and direction or angle, of the plurality of print structures, and in which said modulating introduces the signal within the imagery. Of course, other claims, combinations and technology are described too.