Abstract:
A turbine airfoil assembly has an airfoil with an inner wall, an outer wall, a leading edge and a trailing edge. The airfoil has one or more chambers extending in a substantially chordwise direction of the airfoil. An insert has a plurality of impingement holes, and the insert is configured to be inserted within one of the chambers. The insert is configured to cool the airfoil via the plurality of impingement holes. A chambering element is attached only to the insert, the chambering element is configured to provide an increased cooling gas pressure inside a boundary area defined by the chambering element relative to an area outside the boundary area. A gap exists between the inner wall of the airfoil and the chambering element, and the gap allows cooling gas to exit the boundary area and enter the area outside the boundary area.
Abstract:
Systems and devices configured to seal interfaces/gaps between stationary components of turbines and manipulate a flow of coolant about portions of the turbine during turbine operation are disclosed. In one embodiment, a seal element includes: a first surface shaped to be oriented toward a pressurized cavity of the turbine; a second surface oriented substantially opposite the first surface and shaped to sealingly engage a contact surface of the static components; and a first set of angular features disposed in the second surface, the first set of angular features fluidly connecting the pressurized cavity and the flowpath of the turbine.
Abstract:
A system for removing heat from a turbine includes a component in the turbine having a supply plenum and a return plenum therein. A substrate that defines a shape of the component has an inner surface and an outer surface. A coating applied to the outer surface of the substrate has an interior surface facing the outer surface of the substrate and an exterior surface opposed to the interior surface. A first fluid channel is between the outer surface of the substrate and the exterior surface of the coating. A first fluid path is from the supply plenum, through the substrate, and into the first fluid channel, and a second fluid path is from the first fluid channel, through the substrate, and into the return plenum.
Abstract:
A sealing arrangement for a turbine system includes a bucket having an outer tip and at least one bucket ridge extending radially outwardly from the outer tip, the at least one bucket ridge comprising an abradable material. Also included is a stationary shroud disposed radially outwardly from the outer tip of the bucket. Further included is at least one shroud ridge extending radially inwardly from the stationary shroud toward the outer tip of the bucket, the at least one shroud ridge comprising the abradable material.
Abstract:
A component for use in a hot gas path of a turbomachine, and a method of constructing the same are disclosed. In an embodiment, the component includes an exterior wall substrate, wherein the exterior wall substrate includes an interior face and an exterior face, and a plurality of plateaus disposed on the exterior face. A plurality of cooling holes are formed, providing a fluid passageway between the interior face and the exterior face of the exterior wall substrate. Each cooling hole is disposed such that it passes through a plateau. A first coating layer is deposited over the exterior face of the exterior wall substrate.
Abstract:
Turbine components are disclosed including a component wall defining a constrained portion, a manifold having an impingement wall, and a post-impingement cavity disposed between the manifold and the component wall. The impingement wall includes a wall thickness and defines a plenum and a tapered portion. The tapered portion tapers toward the constrained portion and includes a plurality of impingement apertures and a wall inflection. The wall inflection is disposed proximal to the constrained portion, and the tapered portion is integrally formed as a single, continuous object. The wall inflection may include an inflection radius of less than about 3 times the wall thickness of the impingement wall, or the tapered portion may include a consolidated portion with the impingement wall extending across the plenum. A method for forming the turbine component is also disclosed, including forming the tapered portion as a single, continuous tapered portion by an additive manufacturing technique.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of axial cooling channels in the trailing edge portion of the airfoil are arranged to permit axial flow of a cooling fluid from an interior of the turbine component at the trailing edge portion to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a trailing edge portion with axial cooling channels. The axial cooling channels are arranged to permit axial flow of a cooling fluid from an interior to an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.
Abstract:
A turbine component includes an airfoil having an airfoil chamber disposed within the airfoil, the airfoil chamber configured to supply a coolant through the airfoil. The tip of the airfoil includes a rail extending radially from the tip plate, the rail including an inner rail surface defining a tip pocket therein, an outer rail surface and a radially outward facing rail surface between the inner rail surface and the outer rail surface. A tip rail cavity is within and partially circumscribes the rail, the tip rail cavity receiving a coolant flow. A tip rail cooling passage includes an inlet fluidly coupled to the tip rail cavity, a passage length fluidly coupled to the inlet and partially circumscribing the rail, a metering element fluidly coupled to the passage length, and an outlet fluidly coupled to the metering element and extending through the radially outward facing rail surface.
Abstract:
An airport having an exterior wall including a plurality of spaced layers for improved cooling and lifetime is disclosed. The airfoil and exterior wall are made by additive manufacturing. The exterior wall includes an exterior layer, an intermediate layer, and an interior layer each separated from adjacent layers by a plurality of standoff members; a plurality of first cooling chambers between the exterior and intermediate layers, the chambers partitioned by a first partitioning wall; a plurality of second cooling chambers between in the intermediate and interior layers, the chambers partitioned by a second partitioning wall; a thermal barrier coating on the exterior layer; a plurality of impingement openings in the intermediate layer and a second plurality of impingement openings in the interior layer; and a plurality of cooling passages in the exterior layer. The exterior layer may also include plateaus on an exterior face through which the cooling passages extend.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of nested cooling channels in the trailing edge portion of the airfoil permit passage of a cooling fluid from an interior of the turbine component to an exterior of the turbine component at the trailing edge portion. A method of making a turbine component includes forming an airfoil having a leading edge, a trailing edge portion extending to a trailing edge, and a plurality of nested cooling channels in the trailing edge portion. Each nested cooling channel fluidly connects an interior of the turbine component with an exterior of the turbine component at the trailing edge portion. A method of cooling a turbine component is also disclosed.