Abstract:
An object of the present invention is to provide a mask blank substrate and the like that enables critical defects to be reliably detected as a result of reducing the number of detected defects, including pseudo defects, even when using highly sensitive defect inspection apparatuses that use light of various wavelengths. The present invention relates to a mask blank substrate that is used in lithography, wherein the power spectral density at a spatial frequency of 1×10−2 μm−1 to 1 μm−1, obtained by measuring a 0.14 mm×0.1 mm region on a main surface of the mask blank substrate on the side of which a transfer pattern is formed at 640×480 pixels with a white-light interferometer, is not more than 4×106 nm4, and the power spectral density at a spatial frequency of not less than 1 μm−1, obtained by measuring a 1 μm×1 μm region on the main surface with an atomic force microscope, is not more than 10 nm4.
Abstract:
This invention provides a reflective mask blank capable of preventing peeling-off of a multilayer reflective film due to cleaning or the like in a mask manufacturing process or during mask use. The reflective mask blank includes a multilayer reflective film, a protective film, an absorber film, and a resist film formed in this order on a substrate. Assuming that a distance from the center of the substrate to an outer peripheral end of the multilayer reflective film is L(ML), that a distance from the center of the substrate to an outer peripheral end of the protective film is L(Cap), that a distance from the center of the substrate to an outer peripheral end of the absorber film is L(Abs), and that a distance from the center of the substrate to an outer peripheral end of the resist film is L(Res), L(Abs)>L(Res)>L(Cap)≧L(ML) and the outer peripheral end of the resist film is located inward of an outer peripheral end of the substrate.
Abstract:
Provided is a mask blank glass substrate that has high surface smoothness, that is formed with a fiducial mark capable of improving the detection accuracy of a defect position or the like, and that enables reuse or recycling of a glass substrate included therein. An underlayer is formed on a main surface, on the side where a transfer pattern is to be formed, of a glass substrate for a mask blank. The underlayer serves to reduce surface roughness of the main surface of the glass substrate or to reduce defects of the main surface of the glass substrate. A surface of the underlayer is a precision-polished surface. A fiducial mark which provides a reference for a defect position in defect information is formed on the underlayer.