Abstract:
Technologies for managing security threats on a computing system include detecting a security threat to the computing system, determining a plurality of mitigation scenarios to employ on the computing system to mitigate the security threat, and implementing the plurality of mitigation scenarios. Each mitigation scenario includes one or more threat mitigation actions to be taken by the computing system, one or more response systems of the computing system to perform the threat mitigation actions, and a temporal sequence in which the threat mitigation actions are to be taken. The results of each mitigation scenario is evaluated and a validated mitigation scenario is determined based on the results. A user of the computing device may be subsequently trained or habituated to mitigate the security threat by requesting interaction from the user during the implementation of the validated mitigation scenario in response to a threat scenario designed to replicate the security threat.
Abstract:
Technologies for presenting an advertisement on a media consumption device includes receiving a request to seek past a commercial included in media content played on the media consumption device, determining an advertisement based on the commercial, and presenting the advertisement to a user of the media consumption device during performance of the requested seek function. The advertisement may be, for example, an extracted frame or image of the commercial and may include a logo or phrase associated with a product or service advertised in the commercial. Similar technologies related to a media content distribution system are also disclosed.
Abstract:
Embodiments of apparatus and methods for adaptively controlling air quality in a vehicle compartment are described. In embodiments, an apparatus may include a sensor interface configured to interface with one or more sensors, disposed at one or more locations at one or more sides or in an interior space of a vehicle compartment, and configured to measure one or more indicators of air quality at the one or more locations. The apparatus may further include one or more airflow controllers configured to adaptively control a plurality of ventilation components of the vehicle compartment to regulate airflow in the interior space, based at least in part on the measured indicators of air quality. Other embodiments may be described and/or claimed.
Abstract:
Technologies for presenting an advertisement on a media consumption device includes receiving a request to seek past a commercial included in media content played on the media consumption device, determining an advertisement based on the commercial, and presenting the advertisement to a user of the media consumption device during performance of the requested seek function. The advertisement may be, for example, an extracted frame or image of the commercial and may include a logo or phrase associated with a product or service advertised in the commercial. Similar technologies related to a media content distribution system are also disclosed.
Abstract:
The present application is directed to user authentication confidence based on multiple devices. A user may possess at least one device. The device may determine a device confidence level that the identity of the user is authentic based on at least data collected by a data collection module in the device. For example, a confidence module in the device may receive the data from the data collection module, determine a quality corresponding to the data and determine the device confidence level based on the quality. If the user possesses two or more devices, at least one of the devices may collect device confidence levels from other devices to determine a total confidence level. For example, a device may authenticate the other devices and then receive device confidence levels for use in determining the total confidence level, which may be used to set an operational mode in a device or system.
Abstract:
Systems and methods may provide for determining a usage configuration of a wearable device and setting an activation state of an air conduction speaker of the wearable device based at least in part on the usage configuration. Additionally, an activation state of a tissue conduction speaker of the wearable device may be set based at least in part on the usage configuration. In one example, the usage configuration is determined based on a set of status signals that indicate one or more of a physical position, a physical activity, a current activation state, an interpersonal proximity state or a manual user request associated with one or more of the air conduction speaker or the tissue conduction speaker.
Abstract:
One or more sensors gather data, one or more processors analyze the data, and one or more indicators notify a user if the data represent an event that requires a response. One or more of the sensors and/or the indicators is a wearable device for wireless communication. Optionally, other components may be vehicle-mounted or deployed on-site. The components form an ad-hoc network enabling users to keep track of each other in challenging environments where traditional communication may be impossible, unreliable, or inadvisable. The sensors, processors, and indicators may be linked and activated manually or they may be linked and activated automatically when they come within a threshold proximity or when a user does a triggering action, such as exiting a vehicle. The processors distinguish extremely urgent events requiring an immediate response from less-urgent events that can wait longer for response, routing and timing the responses accordingly.
Abstract:
One embodiment provides a multi-chip module accelerator usable to execute tensor data processing operations a multi-chip module. The multi-chip module may include a memory stack including multiple memory dies and parallel processor circuitry communicatively coupled to the memory stack. The parallel processor circuitry may include multiprocessor cores to execute matrix multiplication and accumulate operations. The matrix multiplication and accumulate operations may include floating-point operations that are configurable to include two-dimensional matrix multiply and accumulate operations involving inputs that have differing floating-point precisions. The floating-point operations may include a first operation at a first precision and a second operation at a second precision. The first operation may include a multiply having at least one 16-bit floating-point input and the second operation may include an accumulate having a 32-bit floating-point input.
Abstract:
A method of embodiments, as described herein, includes detecting thread groups relating to machine learning associated with one or more processing devices. The method may further include facilitating barrier synchronization of the thread groups across multiple dies such that each thread in a thread group is scheduled across a set of compute elements associated with the multiple dies, where each die represents a processing device of the one or more processing devices, the processing device including a graphics processor.
Abstract:
A mechanism is described for facilitating inference coordination and processing utilization for machine learning. A method of embodiments, as described herein, includes limiting execution of workloads for the respective contexts of a plurality of contexts to a specified subset of a plurality of processing resources of a processing system according to physical resource slices of the processing system that are associated with the respective contexts of the plurality of contexts.