Abstract:
A microelectromechanical (MEMS) accelerometer has a proof mass and a fixed electrode. The fixed electrode is located relative to the proof mass such that a capacitance formed by the fixed electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The MEMS accelerometer is exposed to heat sources that produce a z-axis thermal gradient in MEMS accelerometer and an in-plane thermal gradient in the X-Y plane of the MEMS accelerometer. The z-axis thermal gradient is sensed with a plurality of thermistors located relative to anchoring regions of a CMOS layer of the MEMS accelerometer. The configuration of the thermistors within the CMOS layer measures the z-axis thermal gradient while rejecting other lateral thermal gradients. Compensation is performed at the accelerometer based on the z-axis thermal gradient.
Abstract:
A microelectromechanical (MEMS) accelerometer has a proof mass and a fixed electrode. The fixed electrode is located relative to the proof mass such that a capacitance formed by the fixed electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The MEMS accelerometer is exposed to heat sources that produce a z-axis thermal gradient in MEMS accelerometer and an in-plane thermal gradient in the X-Y plane of the MEMS accelerometer. The z-axis thermal gradient is sensed with a plurality of thermistors located relative to anchoring regions of a CMOS layer of the MEMS accelerometer. The configuration of the thermistors within the CMOS layer measures the z-axis thermal gradient while rejecting other lateral thermal gradients. Compensation is performed at the accelerometer based on the z-axis thermal gradient.
Abstract:
A sensor is disclosed. The sensor includes a substrate and a mechanical structure. The mechanical structure includes at least two proof masses including a first proof mass and a second proof mass. The mechanical structure also includes a flexible coupling between the at least two proof masses and the substrate. The at least two proof masses move in an anti-phase direction normal to the plane of the substrate in response to acceleration of the sensor normal to the plane and move in anti-phase in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane. The at least two proof masses move in a direction parallel to the plane of the substrate in response to an acceleration of the sensor parallel to the plane.
Abstract:
Facilitating self-calibration of a sensor device via modification of a sensitivity of the sensor device is presented herein. A sensor system can comprise a sensor component comprising a sensor that generates an output signal based on an external excitation of the sensor; a sensitivity modification component that modifies a sensitivity of the sensor by a defined amount; and a calibration component that measures a first output value of the output signal before a modification of the sensitivity by the defined amount, measures a second output value of the output signal after the modification of the sensitivity by the defined amount, and determines, based on a difference between the first output value and the second output value, an offset portion of the output signal. Further, the calibration component can modify, based on the offset portion, the output signal.
Abstract:
A system and method for providing a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a substrate, an anchor region coupled to the substrate, at least one support arm coupled to the anchor region, at least two guiding arms coupled to and moving relative to the at least one support arm, a plurality of sensing elements disposed on the at least two guiding arms to measure motion of the at least two guiding arms relative to the substrate, and a proof mass system comprising at least one mass coupled to each of the at least two guiding arms by a set of springs. The proof mass system is disposed outside the anchor region, the at least one support arm, the at least two guiding arms, the set of springs, and the plurality of sensing elements.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises providing a MEMS substrate which includes forming one or more cavities in a first semiconductor layer; forming a second semiconductor layer; and providing a dielectric layer between the first semiconductor layer and the second semiconductor layer The MEMS substrate providing step further includes bonding the first semiconductor layer to a second semiconductor layer; etching at least one via through the second semiconductor layer and the dielectric layer; and depositing a first conductive material onto the second semiconductor layer surface and filling the at least one via. The MEMS substrate providing step also includes depositing a second conductive material on top of the first conductive material; etching the second conductive material and the first conductive material to form at least one stand-off; the second semiconductor layer to define one or more MEMS structures; and the first semiconductor layer to create an opening to separate the first semiconductor layer into a first portion and a second portion. The method further comprises bonding the MEMS substrate to a base substrate using a eutectic bond between the second conductive material and metal pads of the base substrate.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises providing a MEMS substrate which includes forming one or more cavities in a first semiconductor layer; forming a second semiconductor layer; and providing a dielectric layer between the first semiconductor layer and the second semiconductor layer The MEMS substrate providing step further includes bonding the first semiconductor layer to a second semiconductor layer; etching at least one via through the second semiconductor layer and the dielectric layer; and depositing a first conductive material onto the second semiconductor layer surface and filling the at least one via. The MEMS substrate providing step also includes depositing a second conductive material on top of the first conductive material; etching the second conductive material and the first conductive material to form at least one stand-off; the second semiconductor layer to define one or more MEMS structures; and the first semiconductor layer to create an opening to separate the first semiconductor layer into a first portion and a second portion. The method further comprises bonding the MEMS substrate to a base substrate using a eutectic bond between the second conductive material and metal pads of the base substrate.