Abstract:
A method and apparatus for reclaiming component plastics from a mixture of plastics wherein differentials in specific gravity serves as the segregation mechanism. The method includes the steps of: (1) fragmenting the plastic articles such that the resulting plastic fragments are generally of a preferred dimension and contain primarily one such component plastic; (2) sizing the fragmented plastic so as to remove plastic fragments which do not comport to the preferred dimensions; (3) adding a fluid medium to the plastic fragments to produce a slurry; (4) loosening contamination from the plastic fragments; (5) segregating the heavy and light components within the slurry based on specific gravity; (6) isolating the segregated plastic fragments; and (7) cleaning the heavy and light components to produce high purity plastic. The step of segregating is accomplished via an improved segregation vessel which performs specific gravity segregation by reducing the gross linear vertical flow rate of fluid medium through the cooperative action of specifically designed baffle members and the vessel shape. An improved segregation chamber is provided having a pair of semi-permeable members which cooperate to define a separation zone and a segregation zone such that vapor and fluid medium is allowed to flow into the separation zone while the plastic fragments are generally restricted within the segregation zone and the segregation zone serves to reduce the gross linear vertical flow rate of fluid medium toward the outlets.
Abstract:
Contaminants are cleaned from the surface of a body in space by generating a substantially space-charge neutral reactive plasma, directing the plasma onto the contaminated surface at an energy below the surface sputtering energy (typically 20 eV), and reacting the plasma with the contaminants to remove them. A helicon wave plasma source is made light weight and compact enough for spacecraft use, with a plasma energy low enough to avoid damaging optical surfaces, by using permanent magnets to establish a static axial magnetic field, and a simple but novel rf antenna design. The antenna consists of a pair of spaced conductive rings which extend around the plasma tube, with conductive base and rf feed bars extending between the rings on diametrically opposite sides. The feed bar is interrupted to provide an rf input on opposite sides of the interruption. The antenna is preferably formed as an integral metal unit, with its rings rigidly supported by and integral with opposite ends of the base bar. The plasma source is also useful in neutralizing localized charges on the spacecraft.
Abstract:
A computer aided design package is used to create a mathematical representation of a three-dimensional object. This object is defined as a set of surfaces oriented in space. A map of the flattened object is created by concatenating selected ones of the surfaces on a single plane. The outline of this map is then used in a computer aided circuit layout package as a printed circuit board on which an electrical circuit is placed and routed. The circuit is translated into a three dimensional form corresponding to the surface of the object by translating and rotating the representation of the object to align each selected surface with the circuit description generated by the circuit layout package. The portion of the circuit corresponding to the surface is then transferred to a three-dimensional data structure having a format that is compatible with numerically controlled machining apparatus. This data structure is used to drive a numerically controlled machine tool that cuts a phototool. This phototool is a three-dimensional mask that may be used to print the circuit on the surface of the three-dimensional object.
Abstract:
In a gate, a stile (20) and rail (21) abut side face to end face and are held together by a bolt passing at right angles through the end face to pull against a plate (25) located in a slot (26). Straps (34,41), see FIGS. 11 and 13, are used to reinforce the hanging and shutting stiles (20,20A) and to carry hanging and latching parts. A latching mechanism, see FIGS. 13 to 16, includes a latching bar (43) that is pivotally connected to the shutting stile (20) towards its middle by a flange (44). A leaf spring (45) urges the bar (43) into a latching position at which, when the gate is shut, the bar (43) is caught behind upper and lower retainers (46) mounted on a shutting gatepost (48). By pulling on a handle (50), the bar (43) can be rocked free of the retainers (46) to permit the gate to be opened. Connector plates ( 31) having sharp tongs are used, see FIGS. 9 and 10, with bolts to connect reinforcing struts (30) to the upper and lower rails (21,21A). Upper and lower hinge brackets for mounting on a hanging gatepost are also provided, see FIGS. 17 to 23.
Abstract:
A high-Q factor resonator includes a solenoid having an embedded capacitor assembled in a machinable high-frequency dielectric printed circuit board (“PCB”), or other substrate. The solenoid comprises a plurality of surface conductors positioned on upper and lower surfaces of the PCB. The solenoid further comprises a plurality of conductive vias extending through the PCB between the surface conductors, and at least two aligned vias are separated by a capacitive gap. A liquid crystal dielectric is embedded within the capacitive gap in order to control the capacitance. Accordingly, a tunable capacitive filter is achieved by changing the dielectric permittivity of the liquid crystal. In one example, a nematic liquid crystal is sealed in the capacitive gap and has its permittivity changed with a low frequency bias to tune the capacitor.
Abstract:
The present disclosure generally pertains to systems and methods for the chemical synthesis of micro-quantities of oligonucleotides or other chemical molecules. The system includes a reusable glass micro-reactor containing a paramagnetic solid support, a magnet, an electronic drive controller and an optical spectroscopy system capable of driving a plurality individual reactors. The system utilizes the electroosmotic movement of reactants through microfluidic channels. Spectrophotometric monitoring of the reaction products allows for the real-time determination of synthesis yield.
Abstract:
Organic compounds showing the ability to inhibit effector toxin secretion or translocation mediated by bacterial type III secretion systems are disclosed. The disclosed type III secretion system inhibitor compounds are useful for combating infections by Gram-negative bacteria such as Salmonella spp., Shigella flexneri, Psendomonas spp., Yersinia spp., en tero pathogenic and enteroinvasive Escherichia coli, and Chlamydia spp. having such type III secretion systems.
Abstract:
Organic compounds showing the ability to inhibit viral glycoprotein (GP)-mediated entry of a filovirus into a host cell are disclosed. The disclosed filovirus entry inhibitor compounds are useful for treating, preventing, or reducing the spread of infections by filovirus including the type species Marburg virus (MARV) and Ebola virus (EBOV). Preferred inhibitors of the invention provide therapeutic agents for combating the Ivory Coast, Sudan, Zaire, Bundibugyo, and Reston Ebola virus strains.
Abstract:
The present disclosure generally pertains to systems and methods for the chemical synthesis of micro-quantities of oligonucleotides or other chemical molecules. The system includes a reusable glass micro-reactor containing a paramagnetic solid support, a magnet, an electronic drive controller and an optical spectroscopy system capable of driving a plurality individual reactors. The system utilizes the electroosmotic movement of reactants through microfluidic channels. Spectrophotometric monitoring of the reaction products allows for the real-time determination of synthesis yield.
Abstract:
A method for regeneration of a CDPF disposed in the exhaust stream of a diesel engine. The method includes a second phase operation following a first phase substantially as disclosed in the prior art. As the first phase ends, as indicated by a temperature sensor at the exit end of the CDPF, the temperature and oxygen content of the exhaust gas are increased at the entrance to the CDPF in an ensuing second stage. These increases cause oxidation of the soot remaining near the entrance and the sides of the CDPF, resulting in a cleaner and higher-capacity CDPF than is produced by a single-phase regeneration in the prior art. The sequential stages are implemented via an algorithm programmed into an Engine Control Module (ECM). A CDPF regenerated in accordance with the invention can have approximately 95% of its filtration capacity restored.