Abstract:
A method is provided for transmitting a physical uplink control channel (PUCCH) in a wireless communication system supporting multiple antennas. The method is performed by a user equipment (UE) having a first antenna port and a second antenna port, and configured for using a multiple-antenna transmit mode for transmission using multiple antennas and a single-antenna transmit mode for transmission using a single antenna. The UE determines that the multiple-antenna transmit mode is to be used for transmitting the PUCCH, and determines a transmit power offset value to be added to a transmit power of the PUCCH depending on a PUCCH format to be used for transmitting the PUCCH using the first and second antenna ports. The UE transmits the PUCCH by using a first PUCCH resource through the first antenna port, and transmits the PUCCH by using a second PUCCH resource through the second antenna port.
Abstract:
A method and apparatus are provided for configuring subframes in a wireless communication system. A user equipment (UE) receives an uplink-downlink configuration from a base station. The uplink-downlink configuration indicates each of a plurality of subframes in a frame to any one of a downlink subframe, a special subframe and an uplink subframe. The special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP) and an uplink pilot time slot (UpPTS). The UE receives frame configuration information from the base station and configures each of the plurality of subframes in the frame to any one of a downlink subframe, a special subframe and an uplink subframe based on the uplink-downlink configuration and the frame configuration information. The UE communicates with the base station using the configured subframes.
Abstract:
A method for encoding a transport block in a wireless communication system, and a wireless apparatus therefore are discussed. The method according to one embodiment includes determining, at a transmitting device, a size of the transport block based on a size of an allocated resource, a number of layers, and modulation and coding scheme (MCS) for the transport block, wherein the size of the transport block is determined from among a plurality of predetermined sizes, wherein the plurality of the predetermined sizes include 305976 bits, 324336 bits, and 391656 bits when the transport block is mapped to four-layer spatial multiplexing and when 256 Quadrature amplitude modulation (QAM) is used for the transport block; and attaching at the transmitting device, a first cyclic redundancy check (CRC) code to the transport block to configure a first CRC-attached transport block.
Abstract:
A method, performed by a user equipment (UE), is provided for uplink transmission. The UE determines transmission power of a sounding reference signal (SRS) toward a first cell belonging to a first timing advance group (TAG) and a physical uplink shared channel (PUSCH) toward a second cell belonging to a second TAG and whether to transmit both the PUSCH and the SRS, or drop the SRS. The UE transmits only the PUSCH but drops the SRS when the UE determines that the plurality of TAGs including the first and second TAGs are configured, that at least one symbol of a first subframe which is used to transmit the SRS toward the second cell of the second TAG is overlapped with a second subframe on which the PUSCH is transmitted toward the first cell of the first TAG and that a total uplink transmission power exceeds a maximum value.
Abstract:
A method is provided for transmitting an acknowledgement/negative-acknowledgement (ACK/NACK) in a wireless communication system based on Time Division Duplex (TDD) in which M downlink subframe(s) are associated with an uplink subframe, where M is equal to or greater than one (1). A user equipment, configured with a plurality of serving cells, receives at least one downlink transport block in the M downlink subframe(s), and determines an ACK/NACK response for the at least one downlink transport block by using one of a plurality of pre-defined mapping rules. Each of the plurality of pre-defined mapping rules is set to define a mapping relation between M ACK/NACK state(s) for each of the plurality of serving cells and the ACK/NACK response based on M. The user equipment transmits the ACK/NACK response.
Abstract:
A method for controlling transmission powers by a communication apparatus in a wireless communication system supporting a plurality of component carriers; and a communication apparatus therefore are discussed. The method according to one embodiment includes controlling transmission powers for one or more channels per each component carrier; when a sounding reference symbol (SRS) transmission overlaps with a physical uplink shared channel (PUSCH) transmission in a time domain, checking whether a total of a PUSCH transmission power for the PUSCH transmission on a first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus; and dropping the SRS if the total of the PUSCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
A method of transmitting a sounding reference signal includes generating a physical uplink control channel (PUCCH) carrying uplink control information on a subframe, the subframe comprising a plurality of SC-FDMA (single carrier-frequency division multiple access) symbols, wherein the uplink control information is punctured on one SC-FDMA symbol in the subframe, and transmitting simultaneously the uplink control information on the PUCCH and a sounding reference signal on the punctured SC-FDMA symbol. The uplink control information and the sounding reference signal can be simultaneously transmitted without affecting a single carrier characteristic.
Abstract:
The present invention relates to a method for controlling uplink transmission power and to a wireless device using same in a wireless communication system. The wireless device receives determines uplink transmission power in consideration of the overlap period between subframes between a first serving cell belonging to a first timing advance (TA) group and a second serving cell belonging to the second TA group, and transmits an uplink channel on the basis of the uplink transmission power.
Abstract:
Provided is a method and an apparatus for transmitting uplink control information by a terminal in wireless communication system. When a PUCCH resource used for transmitting only periodic CSI from a subframe, the resource is a first resource, and a resource indicated by ARI is a second resource, when a setting allows transmitting together ACK/NACK and the periodic CSI through a PUCCH from the same subframe, the first resource and the second resource are mutually exclusive, and the second resource that is used for transmitting together the ACK/NACK and the periodic CSI uses the resource indicated by the ARI from resources determined by an RRC.
Abstract:
A method for receiving a downlink signal in a wireless mobile communication system, and an apparatus therefore; and a method for transmitting a downlink signal in a wireless mobile communication system, and an apparatus therefore are described. The method for receiving the downlink signal according to one embodiment includes receiving common downlink control information including a resource indication value, RIV. The RIV is mapped to a start index S and a length L of consecutive virtual resource blocks, VRBs. The method for receiving the downlink signal according to one embodiment further includes receiving the downlink signal on the consecutive VRBs. The RIV is mapped to the start index S and the length L of the consecutive VRBs, or else the RIV is mapped to the start index S and the length L of the consecutive VRBs.