Abstract:
The present disclosure provides a system and method for inspecting an aircraft. An X-ray/Gamma ray radiation source and a detector are located at above and below a fuselage of an aircraft, respectively. The X-ray/Gamma ray radiation source emits a beam of radiation[ ], wherein the X-ray/Gamma ray radiation[ ] passes through the aircraft to be inspected. The detector receives and converts the beam of X-ray/Gamma ray radiation[ ] that has passed through the aircraft to an output signal, and the system generates a vertical transmission image in real time.
Abstract:
The present invention discloses a vehicle inspection system, comprising: an inspection passage; a vehicle dragging system arranged in the inspection passage, wherein the vehicle dragging system comprises a first dragging means and a second dragging means, which are sequentially arranged along a vehicle dragging direction, and in the vehicle dragging direction, the first dragging means is arranged at the upstream of the second dragging means, and a separating section is arranged between the first dragging means and the second dragging means, so that the first dragging means and the second dragging means are separated by a preset distance in the vehicle dragging direction; and a radiographic inspection system, wherein at least a part of paths of the beams of the radiographic inspection system passes through the separating section between the first dragging means and the second dragging means.
Abstract:
This disclosure provides a radiation detection apparatus and a method, a data processing method and a processor, which relates to the field of radiation detection technology. Wherein, the radiation detection apparatus of this disclosure comprises: a radiation detector which generates an electrical signal by interacting with X-rays; an Analog-to-Digital Converter (ADC) which is coupled to the radiation detector and transmits the electrical signal to a waveform data; and a data processor which receives the waveform data from the ADC, determines the number of single photon signals according to the waveform data, and determines whether an integral signal and/or a count signal of the waveform data will be used for imaging according to the number of the single photon signals.
Abstract:
The present disclosure discloses an in-vehicle detection system and power supply system and power supply controller, which relates to the power supply control field. The power supply system comprises a low-power generator; a battery pack for supplying power to the in-vehicle detection system; a charger electrically connected to the low-power generator and the battery pack, respectively; and a power supply controller electrically connected to the battery pack and the low-power generator, respectively. The present disclosure uses a low-power generator and a battery pack to substitute a high-power generator, which can reduce the requirement on a peak power of the generator by the in-vehicle detection system, and improve the efficiency of the power supply. In addition, since a low-power generator and a lithium battery pack are used to substitute the high-power generator, it is favorable to the lightweight design of the in-vehicle detection system, and meanwhile reduces noises and vibration, and is favorable to improving the user experience and performance metrics.
Abstract:
The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.
Abstract:
The present invention discloses a vehicular radiation inspection system comprising a mobile vehicle body, a detection arm, a radiation source and a detector. The vehicular radiation inspection system further comprises a following mechanism separated from the detection arm. The following mechanism contains radiation protection material, and the following mechanism follows the detection arm to move in a non-contact manner during inspection of the inspected object, so as to prevent radiation leakage. In the present invention, it does not need to infuse radiation protection material having a high density, such as lead, into the detection arm. Therefore, it can effectively decrease the weight of the detection arm, and it does not need to provide a balance counterweight on the mobile vehicle body on which the detection arm is carried, thereby effectively solving the problem that the vehicular radiation inspection system has an excessively large mass. Meanwhile, in the present invention, the moving process of the following mechanism is accurately controlled, so as to prevent the following mechanism from hitting the detection arm.
Abstract:
The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.
Abstract:
Embodiments of the present disclosure provide a real-time calibration device, a real-time calibration method and a detection apparatus. The real-time calibration device is in fluid communication with a sample injection pipeline of the apparatus to be calibrated. The real-time calibration device is configured to release a trace amount of calibration agent molecules during a sample injection of the apparatus to be calibrated, so that the trace amount of calibration agent molecules and a sample entering the apparatus to be calibrated are mixed and together enter the apparatus to be calibrated, and information of the sample and the calibration agent is detected by the apparatus to be calibrated, thereby performing a calibration.
Abstract:
There are provided an ion mobility spectrometer and a sniffer. The ion mobility spectrometer includes: an ion migration tube; a sampling gas path having a sampling device configured to temporarily store a sample gas collected by a sampling head in a sampling pipe; a sample introduction gas path having two ends in communication with the gas inlet and outlet of the ion migration tube respectively, and configured to introduce a carrier gas within the ion migration tube into the sampling pipe and to carry a sample gas temporarily stored in the sampling pipe into the ion migration tube; and a valve assembly configured to only allow gas to flow from the sampling device to the sampling pipe in a sampling state, and to only allow gas to flow from the ion migration tube through the sampling pipe back to the ion migration tube in a sample introduction state.
Abstract:
The present disclosure relates to the technical field of CT detection, in particular to a CT inspection system and a CT imaging method. The CT inspection system provided by the present disclosure includes a scanning device and an imaging device, wherein the scanning device having a radioactive source device and a detection device is configured to rotate at a nonuniform speed in at least partial process of scanning an object to be detected; and the imaging device generates a CT image based on effective detection data, wherein the effective detection data refer to data acquired each time the detection device rotates by a preset angle. In the present disclosure, the imaging device of the CT inspection system generates a CT image based on data acquired each time the detection device rotates by a preset angle, which, compared with traditional image collection solutions, can effectively reduce image deformation and improve accuracy of detection results.