Abstract:
A laser light source, comprising a semiconductor layer sequence having an active region and a radiation coupling out area having first and second partial regions, and a filter structure. The active region generates coherent first electromagnetic radiation and incoherent second electromagnetic radiation. The coherent first electromagnetic radiation is emitted by the first partial region along an emission direction, and the incoherent second electromagnetic radiation is emitted by the first partial region and by the second partial region. The filter structure at least partly attenuates the incoherent second electromagnetic radiation emitted by the active region along the emission direction. The filter structure comprises at least one first filter element disposed downstream of the semiconductor layer sequence in the emission direction and it has at least one layer comprising a material that is non-transparent to electromagnetic radiation.
Abstract:
A method can be used to produce a semiconductor component. A semiconductor layer sequence has an active region that is provided for generating radiation and also has an indicator layer. Material of the semiconductor layer sequence that is arranged on that side of the indicator layer that is remote from the active region is removed in regions. The material is removed using a dry-chemical removal of the semiconductor layer sequence. A property of a process gas is monitored during the removal to determine that the indicator layer has been reached based on a change in the property of the process gas.
Abstract:
A semiconductor laser includes a main body and a ridge structure arranged on the main body, the ridge structure being oriented along a longitudinal axis above an active zone, wherein the ridge structure has a first width, the ridge structure has two opposite end faces along the longitudinal axis, adjacent to at least one end face, the ridge structure has an end section arranged on one side with respect to a center axis of the ridge structure such that the ridge structure is widened on one side adjacent to the end face, and on an opposite side of the ridge structure relative to the end section a fracture trench is arranged adjacent to the end face and at a distance from the ridge structure in a surface of the main body.
Abstract:
A semiconductor laser includes a layer structure with superimposed layers with at least the following layer structure: an n-doped outer layer, a third wave-guiding layer, an active zone in which light-generating structures are arranged, a second wave-guiding layer, a blocking layer, a first wave-guiding layer, a p-doped outer layer. The first, second and third wave-guiding layers have at least AlxInyGa (1−x−y) N. The blocking layer has an Al content which is at least 2% greater than the Al content of the adjacent first wave-guiding layer. The Al content of the blocking layer increases from the first wave-guiding layer towards the second wave-guiding layer. The layer structure has a double-sided gradation. The double-side gradation is arranged at the height of the blocking layer such that at least one part of the blocking layer or the entire blocking layer is of greater width than the first wave-guiding layer.
Abstract translation:半导体激光器包括具有至少以下层结构的叠加层的层结构:n掺杂外层,第三波导层,布置有发光结构的有源区,第二波导层 阻挡层,第一波导层,p掺杂外层。 第一,第二和第三波导层具有至少Al x In y Ga(1-x-y)N。阻挡层的Al含量比相邻的第一波导层的Al含量大至少2%。 阻挡层的Al含量从第一波导层向第二波导层增加。 层结构具有双面等级。 双面灰度被布置在阻挡层的高度处,使得阻挡层或整个阻挡层的至少一部分具有比第一波导层更大的宽度。
Abstract:
An optoelectronic semiconductor laser includes a growth substrate; a semiconductor layer sequence that generates laser radiation; a front facet at the growth substrate and at the semiconductor layer sequence, wherein the front facet constitutes a main light exit side for the laser radiation generated in the semiconductor laser and has a light exit region at the semiconductor layer sequence; a light blocking layer for the laser radiation, which partly covers at least the growth substrate at the front facet such that the light exit region is not covered by the light blocking layer; and a bonding pad at a side of the semiconductor layer sequence facing away from the growth substrate, wherein a distance between the bonding pad and the light blocking layer at least at the light exit region is 0.1 μm to 100 μm.
Abstract:
A method for producing a semiconductor laser diode is specified, comprising the following steps:—epitaxial iv growing a semiconductor layer sequence (2) having at least one active layer (3) on a growth substrate (1)—forming a front facet (5) on the semiconductor layer sequence (2) and the growth. substrate (1), wherein the front facet (5) is designed as a main. emission surface having a light emission region (6) for the laser light (30) generated in the completed semiconductor laser diode,—forming a coupling-out coating (9) on a second part (52) of the front facet (5), wherein the first. part (51) and the second part (52) are arranged at least partly alongside one another in a direction parallel to the front facet (5) and along a growth direction of the semiconductor layer sequence (2), such that the first part (51) is at least partly free of the coupling-out coating (9) and the second part (52) is at least partly free of the light blocking layer (8), and wherein the second part (52) has the light exit region (6),—forming a light blocking layer (8) on a first part (51) of the front facet (5). Furthermore, a semiconductor laser diode is specified.
Abstract:
A semiconductor laser light source comprising an edge-emitting semiconductor body (10) is provided. The semiconductor body (10) contains a semiconductor layer stack (110) having an n-type layer (111), an active layer (112) and a p-type layer (113) which is formed for generating electromagnetic radiation which comprises a coherent portion (21). The semiconductor laser light source is formed for decoupling the coherent portion (21) of the electromagnetic radiation from a decoupling surface (101) of the semiconductor body (10) which is inclined with respect to the active layer (112). The semiconductor body (10) comprises a further external surface (102A, 102B, 102C) which is inclined with respect to the decoupling surface (101) and has at least one light-diffusing sub-region (12, 12A, 12B, 12C, 120A, 120B) which is provided in order to direct a portion of the electromagnetic radiation generated by the semiconductor layer stack (110) in the direction towards the further external surface (102A, 102B, 102C).
Abstract:
A method can be used to produce a semiconductor component. A semiconductor layer sequence has an active region that is provided for generating radiation and also has an indicator layer. Material of the semiconductor layer sequence that is arranged on that side of the indicator layer that is remote from the active region is removed in regions. The material is removed using a dry-chemical removal of the semiconductor layer sequence. A property of a process gas is monitored during the removal to determine that the indicator layer has been reached based on a change in the property of the process gas.
Abstract:
A method for producing an optoelectronic semiconductor component includes: epitaxially growing a semiconductor layer sequence including an active layer on a growth substrate, shaping a front facet at the semiconductor layer sequence and the growth substrate, coating a part of the front facet with a light blocking layer for radiation generated in the finished semiconductor component, wherein the light blocking layer is produced by a directional coating method and the light blocking layer is structured during coating by shading by the growth substrate and/or by at least one dummy bar arranged at and/or alongside the growth substrate.
Abstract:
The invention relates to a component with a main part and a contact structure. The main part has an active zone which is designed to generate electromagnetic radiation at least in some regions during the operation of the component. The contact structure has a plurality of individually actuatable segments. The component has a connection surface and a lateral surface running transversely to the connection surface, and the lateral surface is designed as a radiation passage surface of the component. The connection surface is designed to be structured, wherein the connection surface is defined by common internal boundary surfaces between the main part and the contact structure, and each segment has a local common boundary surface with the main part and is designed for a pixelated current impression into the main part. The invention additionally relates to a method for operating such a component.